读完也没有入门,都是泛泛一讲就过了,术语太多,基础太差,很多地方没读懂,本书从零开始讲解数据科学工作,教授数据科学工作所必需的黑客技能,并带领读者熟悉数据科学的核心知识——数学和统计学。
数据科学入门内容介绍
本书基于易于理解且具有数据科学相关的丰富的库的Python语言环境,从零开始讲解数据科学工作。具体内容包括:Python速成,可视化数据,线性代数,统计,概率,假设与推断,梯度下降法,如何获取数据,k近邻法,朴素贝叶斯算法,等等。作者借助大量具体例子以及数据挖掘、统计学、机器学习等领域的重要概念,详细展示了什么是数据科学。
数据科学入门目录部分展示
前言 xiii
第1章 导论 1
1.1 数据的威力 1
1.2 什么是数据科学 1
1.3 激励假设:DataSciencester 2
1.3.1 寻找关键联系人 3
1.3.2 你可能知道的数据科学家 5
1.3.3 工资与工作年限 8
1.3.4 付费账户 10
1.3.5 兴趣主题 11
1.4 展望 12
第2章 Python速成 13
2.1 基础内容 13
2.1.1 Python获取 13
2.1.2 Python之禅 14
2.1.3 空白形式 14
2.1.4 模块 15
2.1.5 算法 16
2.1.6 函数 16
2.1.7 字符串 17
2.1.8 异常 18
2.1.9 列表 18
2.1.10 元组 19
2.1.11 字典 20
2.1.12 集合 22
2.1.13 控制流 23
2.1.14 真和假 24
2.2 进阶内容 25
2.2.1 排序 25
2.2.2 列表解析 25
2.2.3 生成器和迭代器 26
2.2.4 随机性 27
2.2.5 正则表达式 28
2.2.6 面向对象的编程 28
2.2.7 函数式工具 29
2.2.8 枚举 31
2.2.9 压缩和参数拆分 31
2.2.10 args和kwargs 32
2.2.11 欢迎来到DataSciencester 33
2.3 延伸学习 33
- PC官方版
- 安卓官方手机版
- IOS官方手机版