函数与极限、一元函数微积分、向量代数和常微分方程等,常用平面曲线及其方程、积分表和场论初步,强调的是基本运算能力培养和理论的实际应用,今天东坡小编给大家带来的是高等数学题目及答案。
高等数学重难点
第一:要明确考试重点,充分把握重点.
比如高数第一章的不定式的极限,我们要充分把握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判定连续性的方法.
第二:关于导数和微分
其实考试的重点并不是给一个函数求其导数,而是导数的定义,也就是抽象函数的可导性.还要熟练掌握各类多元函数求偏导的方法以及极值与最值的求解与应用问题.
第三:关于积分部分
定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型.而且求积分的过程中,特别要留意积分的对称性,利用分段积分去掉绝对值把积分求出来.二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目.另外曲线和曲面积分,这也是必考的重点内容.
第四:微分方程,还有无穷级数,无穷级数的求和等
这两部分内容相对比较孤立,也是难点,需要记忆的公式、定理比较多.微分方程中需要熟练掌握变量可分离的方程、齐次微分方程和一阶线性微分方程的求解方法,以及二阶常系数线性微分方程的求解,对于这些方程要能够判断方程类型,利用对应的求解方法,能很快的求解.对于无穷级数,要会判断级数的敛散性,重点掌握幂级数的收敛半径与收敛域的求解,以及求数项级数的和与幂级数的和函数等.
高等数学题目及答案摘要
3.下列说法正确的是 ( )
①若f( X )在 X=Xo连续, 则f( X )在X=Xo可导
②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续
③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在
④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导
4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)
内曲线弧y=f(x)为 ( )
- PC官方版
- 安卓官方手机版
- IOS官方手机版