
TEQC (Translate, Edit, Quality Check)

Table of Contents
Section 1. -- Introduction: teqc
Section 2. -- UNAVCO World Wide Web Support & Contact
Section 3. -- Types of Data
Section 4. -- Basic Modes of Operation
Section 5. -- Operating Systems and Hardware
Section 6. -- Standard Input, Standard Output, and Standard Error
Section 7. -- General Concepts About Syntax
Section 8. -- Using teqc for RINEX Formatting & RINEX Format Verification
Section 9. -- Using teqc for RINEX Header Editing & Extraction;
Introduction to Configuration Options and Files and the teqc Option Hierarchy
Section 10. -- Configuration Options and Command Line Options
Section 11. -- Using teqc for Quality Checking (qc) Mode
Section 12. -- Using teqc with Multiple File Input or File Names Including a , (comma)
Section 13. -- Time-Windowing with teqc
Section 14. -- Splicing with teqc
Section 15. -- Translating with teqc
Section 16. -- Special Translator Considerations and Options
Section 17. -- Wavelength Factors: What teqc Does With Them
Section 18. -- Basic Commands: A Review
Section 19. -- Using teqc in Scripts: Substitution for Batch Mode
Section 20. -- Differences Between teqc's qc Mode and Original UNAVCO QC
Section 21. -- Interpreting teqc's qc Mode Output
Section 22. -- "Strange" Behavior (i.e. Don't Panic)

Last modified: 3 Jan 2003

Introduction: teqc
Section 1.

This document describes and serves as a tutorial for the main features of teqc (pronounced
"tek"). Although the capabilities of teqc extend beyond using just RINEX files, the most

common type of data format that will probably be used by most users is the RINEX format,
either as input, or output, or both. Consequently a shorthand for the three basic kinds of

RINEX formats is used throughout this document:
OBS for RINEX observation data file,
NAV for RINEX navigation message file,
MET for RINEX meteorological data file.

Also, teqc currently handles RINEX version 1 and 2 files (through to version 2.10), though an
attempt to edit a RINEX version 1 file will result in the automatic conversion to a RINEX
version 2.XX (specifically 2.10) file.

If your primary interest is translating native binary formats to RINEX, go directly to the sections
on translation (Section 15 and Section 16).
If your primary interest is editing, go directly to the section on metadata editing/extraction
(Section 9), or RINEX formatting (Section 8), or windowing (cutting) (Section 13)/splicing
(Section 14) operations.
If your primary interest is qc-ing RINEX or native binary data, go directly to the section on the
qc mode (Section 11) of teqc.

Types of Data
Section 3.

• RINEX Data Files:
RINEX version 2.XX (2.10) files are the default type of files that teqc is expecting to process
and/or produce. In order to have a valid RINEX version 2.XX file, the file must conform to the
specifications in the document "RINEX: The Receiver Independent Exchange Format Version
2" available from the University of Berne (or see on-line RINEX 2.10). A minimum set of header
records must be present for each file. These are the non-optional header records specified in
the RINEX version 2.10 document.
RINEX version 1 files can be read with teqc and are converted to RINEX version 2.10 files on
output. Also, lowercase versions of the following header lines are recognized and converted to
uppercase if output (e.g. rinex version / type is read and recognized and converted to RINEX
VERSION / TYPE on RINEX output).
Each RINEX OBS file must have a header with header lines (starting at the 61st character in
the line) that end with:

RINEX VERSION / TYPE (must be first line)

PGM / RUN BY / DATE

MARKER NAME

OBSERVER / AGENCY

REC # / TYPE / VERS

ANT # / TYPE

APPROX POSITION XYZ

ANTENNA: DELTA H/E/N

WAVELENGTH FACT L1/2 (default values)

/ TYPES OF OBSERV

TIME OF FIRST OBS

END OF HEADER (must be last line of header for version 2.XX)

where valid information (i.e., format version = 1, 2, or 2.XX; file type = 'O'; satellite system = ' ',
'G', 'R', 'S', 'T', or 'M') must be present in the first line, the number and types of observations
must be specified on the # / TYPES OF OBSERV record line, and default values for the L1 and
L2 wavelength factors must be given. The rest of the fields in other header records can be
blank if a descriptor string is expected or have some numerical value if a numerical value
(even if it is zero) is expected, but these other header lines must be present with or without
non-blank information. Observation data usually follows the END OF HEADER header record.
(Note that RINEX version 1 does not have a END OF HEADER field, but has a blank line
instead.)

http://www.unavco.org/facility/data/docs/rinex210.txt

Each RINEX NAV file must have a header with header lines (starting at the 61st character in
the line) that end with:

RINEX VERSION / TYPE (must be first line)

PGM / RUN BY / DATE

END OF HEADER (must be last line of header for version 2.XX)

where valid information (i.e., format version = 1, 2, or 2.XX; file type = 'N' for a GPS navigation
message file, 'G' for a GLONASS navigation message file, 'H' for a geostationary signal
payload navigation message file) must be present in the first line. Ephemeris data usually
follows the END OF HEADER header record. (Note that RINEX version 1 does not have a
END OF HEADER field, but has a blank line instead.)
Each RINEX MET file must have a header with header lines (starting at the 61st character in
the line) that end with:

RINEX VERSION / TYPE (must be first line)

PGM / RUN BY / DATE

MARKER NAME

/ TYPES OF OBSERV

END OF HEADER (must be last line of header for version 2.XX)

where valid information (i.e., format version = 1, 2, or 2.XX; file type = 'M') must be present in
the first line and the number and types of observations specified on # / TYPES OF OBSERV
header record line. Meteorological data usually follows the END OF HEADER header record.
(Note that RINEX version 1 does not have a END OF HEADER field, but has a blank line
instead.)

• Trimble *.dat Download Filesets:
Trimble *.dat files from the more recent receivers (ST, SE, SSE, SSi, 4700, 4800, 5700) are
readable with teqc. Some *.dat data records have not been coded into teqc yet (e.g. the older
GPS observable Records 0, 1, 2 and 7). However, teqc should be able to read the entire file
and will report records which have not be coded yet.
MES files are not required, but if they are present and you are using target file names (not
stdin), then teqc will use the matching MES file for each target input file to help resolve certain
metadata.
The ION and EPH download files are not used by teqc.

• Trimble RS-232 RT17 Stream:
The Trimble RS-232 RT17 format from Trimble 4000 SE/SSE/SSi and later receivers is
readable with teqc. Currently, only the record 55h with ephemeris information and record 57h
(GPS or MET observables) have been coded, though, again, teqc will report and skip other
records.

• Trimble Standard Interface Protocol (TSIP):
Minimal support.

• Ashtech Download Files (B-, E-, S-, and D-files):
The Ashtech download file format from various Ashtech receivers (e.g., Z-12, Z-18, GG24,
L-XII, LM_XII) is readable with teqc. Normally, the Ashtech "smoothing" of the pseudoranges

in not applied, but can be turned on. The translation to RINEX should work correctly in cases
where the B-file "version" is 3 or greater--which is the case for any recent Ashtech firmware.
For translations where the version number of the B-file is 2 or less, the phase translation will
be in error. (You can find the version number by using the teqc option +diag.)

• Ashtech RS-232 (real-time) Stream:
The Ashtech RS-232 (real-time) binary data format from various Ashtech receivers (e.g., Z-18,
Z-18, GG24, G-12) is readable with teqc. This includes the binary MBEN, PBEN, and SNAV
records. Like with the Ashtech download format, the Ashtech "smoothing" of the pseudoranges
in not applied by default, but can be turned on.

• Ashtech R-file:
An R-file format can be downloaded from some receivers, such as the Z-12, and this can be
directly read by teqc.

• Ashtech U-file:
An U-file format can be downloaded from the micro-Z receiver, and this can be directly read by
teqc, including the new "data mode 7" format.

• ConanBinary from TurboRogue/TurboStar and Benchmark ACT receivers:
ConanBinary data from the Turbo series of Rogue receivers is readable with teqc.
(ConanBinary data from original Rogues are ordered by SV number, rather than by time, and
will not translate correctly with teqc).

• TurboBinary
TurboBinary data is readable with teqc. This includes data with normal-rate data, high-rate (50
Hz) data, and the so-called "30-1 second" data containing LC data. Extraction of the LC data,
however, is not automatic (since it is not standard RINEX version 1 or 2) and you must use the
-O.obs option to specify the LC data as one of the observation data types.
TurboBinary data from the AOA Benchmark ACT receiver can be tranlated in the usual way for
TurboBinary, or using special Benchmark translation options. For example, using the -aoa tbY
option (for "Y*-codeless" receivers), the C/A-derived L1 phase value is used for the RINEX
"L1" observable, rather than the Y1-codeless L1 phase value.

• Leica LB2 Format:
Teqc can read the Leica LB2 format, used by the Leica MC1000, CRS1000, and CRS1500
and other newer receivers. The translations assume that only one antenna port on the receiver
is being used.

• Leica MDB Format:
Teqc can read the Leica MDB format, used by certain Leica receivers.

• Leica DS Format:
Teqc can read the Leica 200/300 DS fileset format, used by the earlier Leica receivers, e.g.
CR233, CR244, SR299, SR299E, SP299P, SR260, SR261, SR399, SR9500. The files with the
suffixes .cmp, .dat, .eph, .int, .met, .obs, and .pnt will be used. The files with the other suffixes

(e.g., .chn, .alm, .atf, and .at1) are currently ignored. (Note: Leica may have never
implimented/supported the .met file, which could have been used for RINEX MET translation.
But there is some prototype code in teqc in case the user comes across any examples.)

• Canadian Marconi Binary Format:
Teqc can read the Canadian Marconi binary format, mainly for the CMC Allstar OEM
(CMT-1200) receiver. To date, this includes record IDs 21, 22, 23, 63, and 126--sufficient to
write RINEX OBS and NAV files. The translation will include multiple 175-ns clock resets (the
Allstar's clock steering signature) between consecutive epochs.

• Rockwell Zodiac Binary Format:
Teqc can read the binary format used in the Rockwell Zodiac receivers. To date, this includes
message (record) IDs 1000, 1002, and 1102--sufficient to write RINEX OBS files. (There are
no records in the Rockwell Zodiac format which contain SV ephemerides or MET data.)

• Motorola Oncore Format:
Teqc will correctly translate the Oncore format to RINEX OBS except for the L1 phase.

• ARGO Format:
The two ARGO format files types, *.dat and *.orb, can be read with teqc. The ARGO *.dat file
is equivalent to the RINEX OBS file; the ARGO *.orb file is equivalent to the RINEX NAV file.

• Texas Instruments 4100 GESAR, BEPP/CORE, and TI-ROM Formats:
Binary data from the TI-4100 can be read with teqc, though the code for all records types has
not been tested. (This is because examples of certain record types have not yet been
encountered in use to date. For example, so far, only Record 1 of the TI-ROM format has been
encounterd in actual files, which is sufficient to write RINEX OBS files.) These translators are
being included primarily to read legacy data. To date, teqc can read what has been called
GESAR and/or BEPP/CORE data (can be a mixture) or can read the original TI-ROM format.
Depending on the record types in the data, it is possible to extract not only P1/CA, P2, L1, and
L2, but also signal-to-noise (S1 and S2) and Doppler (D1 and D2).

• Future Plans:
Support is being considered for:

• Topcon Precision System (TPS) format and original JPS (Javad) format

Status on other formats:

• for old Trimble *.dat containing records 0 or 7, please contact Trimble for help

• for Ashtech B-files prior to Version 3, try Ashtech's convert program; if that does not work, try Berne's

ASRINEXO; if that does not work, please contact Ashtech for help

Basic Modes of Operation
Section 4.

There are three different basic modes of operation of teqc:

• translation

• editing: metadata extraction and/or editing, formatting, windowing (cutting) and/or splicing

• quality checking (qc)

Any of these modes can be used by themselves, or in combination with one another. For
example, some of the ways that you might use teqc are:

• check a RINEX file or files for compliance with RINEX version 2.XX specification; for example,

missing non-optional header fields are identified

• modify (edit) any existing RINEX header fields in a RINEX file and output the resulting edited RINEX

file

• quality check a valid RINEX OBS file or files, but without a RINEX NAV file or binary ephemerides (qc

"lite" == no position information)

• quality check a valid RINEX OBS file or files using ephemerides data in a valid RINEX NAV file or files

(qc "full" == position information possible)

• window or cut (specify a sub-window of time) and/or splice two or more RINEX files

• translate (convert) certain native binary formats (e.g., Trimble *.dat) to RINEX OBS and/or NAV files

These modes of operation work alone or in concert with one another. As an example, a Trimble
binary stream can be translated to RINEX OBS and NAV files; have empty header fields in the
OBS file (such as the MARKER NAME) filled in; have the stream qc-ed, explicitly
time-windowed, and auto-switched from qc-lite to qc-full when enough satellite ephemerides
are encountered in the data stream, all in a single teqc run.
It may also be helpful for the first-time user to be aware that:

• A minimal number of assumptions have been made about the file names that teqc uses. Essentially

the file names can be any valid name for the OS, except that no input file name can start with a '-' or

'+' character, and names with whitespace (like spaces) are probably best avoided. The

Berne-recommended naming convention for RINEX files, though not necessary for teqc, is quite

acceptable and can be readily used on the command line or in scripts using teqc.

• In general, teqc is design-ready not only for NAVSTAR GPS data, but also GLONASS data, NNSS

Transit data, geostationary signal payload (GSSP), or any other future system that may become part

of the RINEX standard. Just the details need to be written into the code as they become available.

• teqc is 100% non-interactive; it will not query the user for input or to find out if something is OK. Your

may receive a "Notice", "Warning", or "Error" to stderr. If something is wrong (ususally an "Error" or

usage problem), teqc informs the user and terminates.

• In general, teqc does not use hard-wired array sizes, but instead allocates and deallocates memory

as needed. As long as your computer has enough computer memory, you should never run into array

bound problems.

• teqc is conservative about memory use.

The basic design of teqc is command-line oriented, following the UNIX shell model. For the
remainder of this document, it will be assumed that the user is using a UNIX OS and is familiar

with basic UNIX commands. Documentation specific to other operating systems (e.g. DOS)
will be included as the program is ported and tested on other operating systems.

Operating Systems and Hardware
Section 5.

To date, teqc has been tested by UNAVCO personnel and other users on:

Linux x86
Solaris Sparc 2.3 and higher
Solaris x86 2.6 and higher
HP-UX 10.20 and higher (PA-RISC platforms)
DEC Digital-UNIX OSF1 V4.0
DEC Alpha Linux
IBM AIX 4.3
SGI IRIX 5.3
Macintosh OSX
Microsoft (95/98/NT/2000/XP)

Support for other platforms may be included over time. If you need support on a UNIX platform
not listed above and can provide a guest login on that platform with a ANSI or K&R (Kernighan
and Ritchie--aka "traditional") C compiler, contact teqc technical contact.

Standard Input, Standard Output, and Standard Error
Section 6.

Another basic design feature is the use of standard input (stdin), standard output (stdout), and
standard error (stderr). Instead of a file as input, teqc can be in a pipeline accepting a RINEX
format stream or binary data stream as stdin. Stderr is reserved for reporting problems that
may occur any time teqc encounters something in any file or in stdin that it doesn't like or
understand. Stdout is used for dumping the ASCII product requested by the user consistent
with the command line syntax. The output from teqc then has the following caveats at the
present time: stdout and stderr must be able to be separated.
Consequently, the user is encouraged to use a shell that can distinctly separate stdout and
stderr. For UNIX, this includes the Bourne shell (sh) and the Korn shell (ksh). For UNIX
C-shell (csh) or for DOS--which do not allow you to direct stdout and stderr separately to
different files--an option of teqc (i.e. +err filename) can be used to send what would have gone
to stderr to a separate file, to avoid unpleasantries when stdout and stderr would otherwise go
to the same place. For the remainder of this document, it will be assumed that the UNIX user is
using either sh or ksh, though the following examples should allow a user to easily use csh or
a MS DOS shell to achieve the same results.
Though the rest of this tutorial assumes you will be using sh or ksh, you can easily use teqc
with csh or a DOS to control stdout and stderr. When using csh or a DOS (or with any other

shells), you can use the command options +out, ++out, +err and/or ++err to have teqc
internally redirect stdout and/or stderr to specific files. Thus:

sh or ksh:
teqc {rest of command} 2> err.txt [stdout to screen]
any shell:
teqc +err err.txt {rest of command} [stdout to screen]

or
sh or ksh:
teqc {rest of command} > out.txt [stderr to screen]
any shell:
teqc +out out.txt {rest of command} [stderr to screen]

should be exactly equivalent. You can even use +out and +err on the same execution of teqc
to write to the same file name:

sh or ksh:
teqc {rest of command} > temp 2>&1
any shell:
teqc +out temp +err temp {rest of command}

Also, you can append to an existing file using ++out or ++err:
sh or ksh:
teqc {rest of command} >> out.txt 2>> err.txt
any shell:
teqc ++out out.txt ++err err.txt {rest of command}

To append with either just stdout or stderr, or use ++out or ++err:
any shell:
teqc {rest of command} >> out.txt [stderr to screen]
any shell:
teqc ++out out.txt {rest of command} [stderr to screen]

or
any shell:
teqc {rest of command} 2>> err.txt [stdout to screen]
any shell:
teqc ++err err.txt {rest of command} [stdout to screen]

In short, regardless of what shell you are using, there should a way to accomplish what you
want for redirection of stdout and stderr.

General Concepts About Syntax
Section 7.

The general syntax for teqc is:

teqc {options} [file1 [file2 [...]]]
or (except for DOS shells):

teqc {options} < stdin
or similarly

... | teqc {options}
The file or files listed at the end of the command line, or stdin, are the targets which are to be
processed for each execution of teqc. This is mentioned since other file names may be
present in the options, but any files listed in the options are part of the processing configuration
and are not considered to be targets of the processing.
Even executing just

teqc
(i.e., no targets present) is allowed; this returns teqc's best guess as to which GPS week it
currently is based on the CPU's clock (but how good this guess is depends on how well the
CPU's time is set).
There is a mnemonic governing the use of - and + preceding each option:

leading -:
indicates intent to input something (besides stdin or target file list),
or indicates intent to turn off some option
leading +:
indicates intent to output something, (besides stdout and/or stderr),
or indicates intent to turn on some option

For some options, a leading - and + do the same thing. To get help, for example,

teqc -help
and

teqc +help
both dump an extensive usage to stderr. (Following the mnemonic, only the +help should give
help, but why further confuse the issue when the user is requesting for help? For this reason,
both work here.) Also, the RINEX header editing option flags work the same way: e.g., -O.mo
is the same as +O.mo. You can either think of -O.mo as inputting some header information
(the monument name), or using +O.mo as forcing what you want the output header
information to be.
In order to try to detect possible command line input errors, target file names at the end of the
command line starting with the character '-' or '+' are currently disallowed. Anything starting
with the characters '-' or '+' is always assumed to be a command line option.
Sometimes, especially with new features (e.g., new translators) as they are being added and
debugged, you may be inundated with warning messages going to stderr. Most of these can
usually be suppressed by including the -warn option:

teqc -warn {rest of command}

Using teqc for RINEX Formatting & RINEX Format Verification
Section 8.

Suppose you have three RINEX files (using the Berne-recommended naming conventions):
fbar0010.97o, fbar0010.97n, and fbar0010.97m being your OBS, NAV, and MET filenames
respectively. Let us suppose that you first wish to verify that your fbar* files can be interpreted
as RINEX version 2.XX format compliant, i.e. that their format is such that they have all the bits
and pieces in them to make them look like a RINEX file (but not that the information in them is

necessarily valid). One way of doing this is to execute:

teqc fbar0010.97o
teqc fbar0010.97n
teqc fbar0010.97m

What you see being dumped to the screen is a re-processed RINEX version 2.XX format. All
information originally in the target file will be retained in the output version (--and if its not,
there's a bug, so please report this).
Or you could execute:

teqc fbar0010.97o > temp0010.97o
teqc fbar0010.97n > temp0010.97n
teqc fbar0010.97m > temp0010.97m

in which case the re-processed RINEX files are redirected (stdout) and saved as a set of
temp* files.
After doing the above three commands, it might also be instructive to do something like:

diff fbar0010.97o temp0010.97o | more
to see what some of the differences between the original target file and the re-processed file
might be. If the original file were produced by teqc, you shouldn't see any differences (--and,
again, if you do, there's a bug, so please report this).
If, in fact, there is some format problem with any of the above input RINEX files fbar0010.97*,
teqc will output stdout (either to the screen as in the first set of examples, or redirected to files
as in the second set of examples) until the problem is encountered, at which point it will report
the problem using stderr and terminate. teqc makes few guesses about what a RINEX file is
supposed to be; if a file has a problem, a human or some other program must be used to fix it
before teqc will proceed further.
Now suppose that you have a list of RINEX files that you wish to check for RINEX version 2.XX
format compliancy, but don't want to save any re-processed stdout. There are several ways to
do this (e.g., in UNIX):

teqc fbar0010.97o > /dev/null
teqc fbar0010.97n > /dev/null
teqc fbar0010.97m > /dev/null

or, using the command line option +v (any shell):

teqc +v fbar0010.97o
teqc +v fbar0010.97n
teqc +v fbar0010.97m

or:

teqc +v fbar0010.97o fbar0010.97n fbar0010.97m
or (UNIX shell regular expressions):

teqc +v fbar0010.97[m-o]
or even (e.g., if using ksh):

teqc +v `ls fbar0010.97*`
Essentially the +v option does three things:

1. shuts off the dump to stdout--so teqc +v fbar0010.97o should execute faster than teqc fbar0010.97o

> /dev/null,

2. suppresses file "splicing"--so teqc understands that the input files are not necessarily of the same

RINEX type, and

3. dumps a short message to stderr saying that each input file conforms to RINEX version 2.XX

specifications at the end of the execution of the file, or a error message dumped to stderr if a problem

was encountered.

teqc also examines the target(s) for proper time-ordering. For OBS and MET files, the time
marker being examined is the observation and/or event epoch. For NAV files, three time
markers are examined: the TOC ("time of clock") epoch, the TOE ("time of ephemeris") epoch,
and the TOW ("time of transmission"). For OBS and MET files, time-ordering is required. For
NAV files, a sanity check is performed on the three times for each ephemeris.
When inputting multiple target files of the same type, teqc looks to see if this time ordering
remains sequential (though neighboring epochs of exactly the same time are currently
allowed)--except for RINEX NAV files, where the information is sorted before it is used. For this
reason, assuming that the data in fbar0020.97o really follows fbar0010.97o, executing

teqc +v fbar0020.97o fbar0010.97o
will result in an error message and program termination at the first observation epoch in
fbar0010.97o (assuming no other errors).

Using teqc for RINEX Header Editing & Extraction;
Introduction to Configuration Options and Files and the teqc

Option Hierarchy
Section 9.

As experienced RINEX file users know, any or all of the RINEX header information may be
incorrect. In principal, any of this information can be modified by anyone using an editor for
ASCII files, such as "ed", "ex", or "vi" on a UNIX OS, on a file-by-file basis (which, incidentally,
highlights one of the most severe vulnerabilities of RINEX--ease of intentional or
non-intentional data tampering).
However, it often occurs that the same type of information needs to be corrected on a large set
of RINEX files and that the same corrected information needs to be placed in these fields on all
the effected files. In this case, it may be easier to use the RINEX modification (editing)
capabilities of teqc.
For example, suppose the monument (marker) name needs to be corrected to read "the
foobar site" in the OBS file fbar0010.97o. This can be accomplished by executing

teqc -O.mo "the foobar site" fbar0010.97o > temp0010.97o
in which case the corrected file is now temp0010.97o. The -O.mo option specifies that the
original monument name in any OBS file being processed is to be overridden with the string
"the foobar site". Notice the double-quotes on the command line encapsulating the string
which contains blanks as white space. If you wished to change the monument name to just
"foobar", you could execute

teqc -O.mo "foobar" fbar0010.97o > temp0010.97o
or just

teqc -O.mo foobar fbar0010.97o > temp0010.97o
Notice that in this case, there are no blanks in the replacement field (i.e., the new monument
name), so the double-quotes are optional.
There is a similar mechanism to change every header field in a RINEX file, except 1) RINEX
comments, in which case the user can only append more comments in the RINEX header, and
2) the first header record of the RINEX file. Rather than list all the possible options here, it is
easier to have teqc do it, by using the ++config option with a RINEX target file:

teqc ++config fbar0010.97o
which will dump all the changeable header information and the current values (i.e., those in
the OBS file fbar0010.97o) to stdout. A related option, +config, shows only those options
which have been set by command line or other means. To see the difference, try:

teqc -O.mo foobar +config fbar0010.97o
teqc -O.mo foobar ++config fbar0010.97o

Basically, +config means: "show me what internal default option settings/values of teqc have
been overridden"; ++config means: "show me how all the teqc options are set, including the
internal defaults".
Executing just

teqc ++config
will show the generic default configuration options of teqc (plus a few lines about the GPS
week that went to stderr).

When executing just teqc ++config (i.e. no target files), the two options -st[art_window] and
-e[nd_window] show the total possible time range with which teqc is able to cope--down to a
resolution less than a femtosecond (1e-15 sec). The format for the arguments of these options
are YYYYMMDDhhmmss.sss. Internally, 12 bits are used to store the value of the year, giving
teqc the capability of dealing with 4096 years. Thus, with the internal calendar starting at 1980
A.D. (the GPS calendar started on 6.0 Jan 1980), teqc's calendar won't become obsolete any
time soon--e.g. teqc passed the Y2k transition on 1.0 Jan 2000 and the GPS week 1024
rollover on 22.0 Aug 1999 perfectly. Whether you specify it or not, teqc always works with a
defined time window, where executing teqc ++config shows the maximum bounds on that
time window. Note that you can't use times before 1.0 Jan 1980.
After executing teqc ++config, you probably noticed that some of the configuration options
end with something like [stuff]. The characters in the brackets and the brackets themselves
are optional material included only to make the option more understandable to the user; only
the characters to the left of the leading [is used to identify the configuration option. Thus
-O.mo and -O.mo[nument] and -O.monument and -O.moe_and_curly all mean exactly the
same thing: the user is trying to set the monument name with the next argument. However, like
the rest of the option flag name, only printable characters are allowed in the brackets; no white
space is allowed.
You can redirect this configuration information to a file, which is called a configuration file:

teqc ++config fbar0010.97o > my_obs_config
This ASCII configuration file (i.e., my_obs_config in the above example) can be easily edited
to contain (hopefully) correct information. The meaning of the various -O flags should be fairly
obvious to anyone familiar with the RINEX OBS header fields:

-O.s[ystem]
satellite system (G = GPS, R = GLONASS, S = geostationary signal payload, T =
Transit, M = mixed)
-O.pr[ogram]
program used to create RINEX file (note: will be obsolete and ignored in first release
after 7 Jan 1999)
-O.r[un_by]
name of user of program
-O.d[ate]
date of program execution (note: will be obsolete and ignored in first release after 7
Jan 1999)
-O.o[perator]
name of site operator (observer)
-O.ag[ency]
name of agency
-O.mo[nument]
monument (marker) name
-O.mn
monument (marker) number
-O.rn
receiver number
-O.rt
receiver type
-O.rv
receiver software/firmware version
-O.an
antenna number
-O.at
antenna type
-O.px[WGS84xyz,m]
approximate geocentric position in WGS84 cartesian coordinates, in meters
-O.pe[hEN,m]
antenna topocentric correction, in meters
-O.c[omment]
original header comment (note: use +O.c[omment] to append a new comment)
-O.int[erval,sec]
sampling interval, in seconds
-O.st[art]
date & time of first observation epoch
-O.e[nd]

date & time of last observation epoch
-O.def_wf
default wavelength factors for L1 and L2 (see note on teqc's handling of wavelength
factors)
-O.obs[_types]
list of observables and the observables themselves in the data portion of the file

There are also a few other options that can be used to input information, but are never output
with +config or ++config:

-O.dec[imate]
modulo decimation of OBS epochs to # time units (seconds by default); -O.dec 30 or
-O.dec 30s or -O.dec .5m results in epochs nominally at 00 and 30 seconds being
output; millisecond jumps should be accounted for automatically
-O.pg[eo,ddm]
approximate geocentric position in WGS84 geographic coordinates, latitude and
longitude in decimal degrees and elevation in meters (this input is converted to
WGS84 cartesian coordinates)
-O.sl[ant]
input vertical topocentric antenna correction as slant height, antenna diameter, and
vertical phase center offset (E and N are assumed to be zero) (this input is converted
to the cartesian topocentric correction h 0 0)
+O.c[omment]
append a new comment field (note: you cannot change existing comments with
-O.c[omment])
-O.rename_obs
change the character designations of the observables in the # / TYPES OF OBSERV
in the RINEX OBS header, but does not rearrange the data in the file; use with care!
-O.mod_wf
set the wavelength factors for a specific set of SVs different from the default
wavelength factors (this will not be present in the RINEX OBS header as a
WAVELENGTH FACT L1/2 record; see note on teqc's handling of wavelength factors)
-O.mov[ing] 1
force RINEX OBS antenna position to be in kinematic (roving) state initially (especially
regardless of binary flags if doing translation); note that this option has an argument: 1
to turn on and 0 to turn off

There is a similar set of editing/extraction flags for RINEX NAV files, which you could obtain by
examining: teqc ++config fbar0010.97n | more

-N.a[alpha]
ionosphere alpha parameters
-N.b[eta]
ionosphere beta parameters
-N.leap
leap seconds for UTC time model
-N.UTC
UTC time model A0 A1 t w

-N.pr[ogram]
program used to create RINEX file (note: will be obsolete and ignored in first release
after 7 Jan 1999)
-N.r[un_by]
name of user of program
-N.d[ate]
date of program execution (note: will be obsolete and ignored in first release after 7
Jan 1999)
-N.s[ystem]
satellite system (G = GPS, R = GLONASS, S = geostationary signal payload, T =
Transit, M = mixed)
-N.c[omment]
original header comment (note: use +N.c[omment] to append a new comment)

and likewise for editing you can also use
+N.c[omment]
append a new comment field (note: you cannot change existing comments with
-N.c[omment])

There is a similar set of editing/extraction flags for RINEX MET files, which you could obtain by
examining: teqc ++config fbar0010.97m | more

-M.pr[ogram]
program used to create RINEX file (note: will be obsolete and ignored in first release
after 7 Jan 1999)
-M.r[un_by]
name of user of program
-M.d[ate]
date of program execution (note: will be obsolete and ignored in first release after 7
Jan 1999)
-M.obs[_types]
list of meteorological observables and the met observables themselves in the data
portion of the file
-M.mo[nument]
monument (marker) name
-M.mn
monument (marker) number
-M.c[omment]
original header comment (note: use +M.c[omment] to append a new comment)

and likewise for editing you can also use
+M.c[omment]
append a new comment field (note: you cannot change existing comments with
-M.c[omment])
-M.rename_obs
change the character designations of the meterological observables in the # / TYPES
OF OBSERV in the RINEX MET header, but does not rearrange the data in the file;
use with care!

Let's return to the metadata from the fbar0010.97o. Assuming that the configuration file
my_obs_config from above now contains corrected RINEX OBS fields, you could execute (in
sh or ksh):

teqc `cat my_obs_config` fbar0010.97o > temp001a.97o
or (using another teqc command line option)

teqc -config my_obs_config fbar0010.97o > temp001b.97o
The -config this_config_file specifies that you are inputting a configuration file called
this_config_file.
There is an important difference between the last two example commands, though it should
not be apparent at this point (i.e., executing diff temp001a.97o temp001b.97o should show
that the two modified files are identical). Here the option hierarchical procedure used in teqc is
introduced. To make full use of teqc's capabilities, it is strongly suggested that the user
eventually become familiar with this hierarchy.
The primary rule to remember when using configuration options is:
The first setting/value for a configuration option that is encountered is the one that's
used (later settings/values for the same configuration option are ignored); except for three
special cases: inputting multiple config files, multiple NAV files for the qc mode, and
additional RINEX comments.
All that is needed now is to know the order in which configuration options are processed.
The first configuration options that are processed are the command line options, processed left
to right. For example, execute:

teqc -O.mo "the foobar site" -O.mo foobar ++config fbar0010.97o
Here, there are two identical configuration options on the command line, -O.mo, to change the
monument name, but two different arguments. Which is used? The answer is the first one
encountered, which in this case is the one to the left. To convince yourself, also try:

teqc -O.mo foobar -O.mo "the foobar site" ++config fbar0010.97o
In the example execution from above (using sh or ksh):

teqc `cat my_obs_config` fbar0010.97o > temp001a.97o
the `cat my_obs_config` turns the contents of the configuration file my_obs_config into
command line configuration options, the first line of which (at the top of the file) becomes
equivalent to the leftmost command line option, proceeding to the last line of which (at the
bottom of the file) becomes equivalent to the rightmost command line option.
The next configuration options that are processed come from a special environment variable (if
it exists), called $teqc_OPT. Actually, the executable looks for an environment variable that
matches the name of the executable. So if you do cp teqc my_teqc and then use my_teqc as
the executable, it will look in this case for the environment variable called $my_teqc_OPT.
Therefore, if you set $teqc_OPT (assuming sh or ksh):

export teqc_OPT="-O.mo foobar"
and then execute and compare

teqc ++config fbar0010.97o
teqc -O.mo "the foobar site" ++config fbar0010.97o

you will see that the monument name is set to foobar in the first case (using the environment
variable $teqc_OPT) and the foobar site in the second case (using the command line option).
The next configuration options that are processed are all the specified configuration files. A list
of these are formed in the following way. First, all -config command line arguments or any in
$teqc_OPT are stored. Then (assuming, again, that our executable is still called teqc), the
environment variable $teqc_CONFIG is looked for, which may contain the name or the
complete path and name to another configuration file. If $teqc_CONFIG exists, the name it
contains is appended to the end of this list of configuration files (if any) from the command line.
Now all that is needed to is to find each of these configuration files (if they exist), which is done
in the following way.
For each possible configuration file name, the name is first examined to see if it starts with a /
character assuming a UNIX-style directory naming convention. (With the DOS-style
convention, a \ is used; with the MacIntosh-style convention, a : is used.) If the name does
start with /, teqc assumes that the configuration file name is absolute, i.e., it contains a full path
preceding the file name. In this case, teqc will try only this path and name. If the file exists and
can be read, it is processed as a configuration file; if it does not exist or cannot be read, teqc
moves on to the next file in the list.
If the configuration file name does not start with a /, teqc assumes that the configuration file
name is relative, i.e. it contains only a partial path and file name, or perhaps just the file name.
At this point, teqc looks for an $teqc_PATH environment variable, set up the same way as
other $*PATH environment variable, i.e. with a : separating the different paths. If this
$teqc_PATH environment variable exists, each path in it is used as a prefix to the relative
configuration file name. If a file is found that can be read, it is processed as a configuration file,
and then teqc moves on to the next configuration file in the list. If it cannot be found or cannot
be read, teqc tries the next path as a prefix, and so on.
If $teqc_PATH does not exist, teqc will always try the path ., i.e., the present working directory.
If you use $teqc_PATH, you will probably want to make sure that . is one of your paths; teqc
will not automatically include it for you in this case.
To summarize, the hierarchy for processing configuration options is:

1. process command line options first, left to right

2. any -config arguments are stored as a list of configuration files

3. if it exists, the environment variable $teqc_OPT is processed according to the same hierarchy as 1)

and 2) above

4. if it exists, the environment variable $teqc_CONFIG is appended to the end of the list of configuration

files extracted from the command line and the environment variable $teqc_OPT

5. the accumulated list of configuration files is then processed, first to last:

o if the name of the configuration file is absolute, only that path and name are examined

o if the name of the configuration file is relative: the list of paths in $teqc_PATH is used until a

file is found and read or until all the paths in $teqc_PATH are exhausted; if $teqc_PATH

does not exist, only the relative path . is tried.

o then each configuration file is processed from left to right and top to bottom

6. any configuration option not set by the above has a default configuration option hardwired in the teqc

executable, or in the case of inputting RINEX or native binary formats (via stdin or files), the original

information is used, or if that information is not present, it is null.

If using teqc in a qc mode, a list of found-and-read configuration files will be included in both
the qc short report segment and the qc long report segment.
This may seem like a mind-boggling set of unnecessary possibilities, but you can be assured
that there is a reason. So far you have only been exposed to the -O.* options for modifying
header fields in RINEX OBS files. There are over 20 of these options. There is a similar set of
-N.* options for RINEX NAV files and -M.* options for RINEX MET files. For general use of
teqc there are about a dozen different options and with the quality checking mode (qc) there
are about 7 dozen different options. To have all of these options crammed into one file (which
is certainly possible), creates a near-unmanageable file if you are interested in changing only
one or two parameters. Each configuration file need not have all the options specified, owing
to the way that teqc looks at each file: more as a set of command line options with random
order than a rigidly formatted file. If ideas are not already starting to churn in your head as to
how to take advantage of this flexibility, an example in the section on scripts will show you how
to easily make use of this option hierarchy.

Furthermore, you don't really need to use any configuration files (perhaps just a few
configuration options used as command line options) to have teqc produce reasonable output
in most cases, as demonstrated by the first examples in this document.

Configuration Options and Command Line Options; What's the
Difference?
Section 10.

Syntactically, it may appear that there is no difference between what is being called a
configuration option and a normal UNIX command line option for teqc. For many of the options,
there is, in fact, no difference. That's the beauty of the whole teqc interface design!
However, for an important subset of teqc configuration options there is a critical difference.
These are the options that have arguments which are characters strings that might
encapsulate white space, like -O.mo discussed in detail above. Currently, these are only the
-O., -N., and -M. options which will edit RINEX header character fields, plus the +O.c, +N.c,
and +M.c options to include any new RINEX comments. The important differences for these
options are:

• if the text string contains whitespace, the text string must be delimited by a set of " (double-quotes)

(though delimiting any text string with a set of double-quotes is always permissible)

• if the text string contains a " (double-quote) or a \ (backslash) character itself, each instance must be

preceded by an additional \, i.e. \" or \\

Using the +O.c option, some examples are shown here to (hopefully) clarify what can be done.
The same fashion of operation occurs with any of the other text string options, e.g. -O.mo.
Create a config file, comment_config, containing:

+O.c " \"\\ This is a \"comment.\" \\ \" \ "

and execute
<prompt> teqc -config comment_config RINEX_OBS | grep comment

 "\ This is a "comment." \ " COMMENT

where RINEX_OBS is any RINEX OBS file. Or using the command line (e.g. with ksh):
<prompt> teqc +O.c " \"\\\ This is a \"comment.\" \\\ \"" RINEX_OBS | grep comment

 "\ This is a "comment." \ " COMMENT

Notice that two extra backslashes were required due to metacharacter interpretation of two of
the backslashes by the shell. A similiar type of shell interpretation of the backslash is required
here:

<prompt> teqc +O.c long=123W34\'45\" RINEX_OBS | grep long=

long=123W34'45" COMMENT

where an additional \ (backslash) had to included, not for teqc, but to suppress the
metacharacter meaning of the ' (single-quote) for the shell. (In this latter example, note that the
text string is not delimited by a set of " (double-quotes) since there is no whitespace included
in the text string.) Or using $teqc_OPT, execute (e.g. with ksh):

<prompt> export teqc_OPT="+O.c \" \\\"\\\\ This is a \\\"comment.\\\" \\\ \\" \ \""

<prompt> echo $teqc_OPT

+O.c " \"\\ This is a \"comment.\" \\ \" \ "

<prompt> teqc RINEX_OBS | grep comment

 "\ This is a "comment." \ " COMMENT

where lots of extra backslashes were required by metacharacter interpretation of backslashes
by the shell to establish the correct value for the environment variable $teqc_OPT.
A minor flaw occurs if trying:

<prompt> unset teqc_OPT

<prompt> teqc `cat comment_config` RINEX_OBS | grep comment

 "\ This is a "comment." \ " COMMENT

(The initial unset command just eliminates $teqc_OPT in case it had a value.) Notice that
each multiple whitespace area in the original comment string collapses into a single
whitespace area in the RINEX comment. (The whitespace collapse occurs during the
interpretation of the cat command by teqc.) In this case, this result is the best that can be
accomplished given the way UNIX shells work.
To complete the symmetry of the teqc interface, when using the +config or ++config options
any existing " (double-quote) or \ characters in RINEX text fields are expanded into \" or \\ in
the resulting config output. In this way, the config output is immediately usable as a valid and
complete teqc config file.

Using teqc for Quality Checking (qc) Mode
Section 11.

A large portion of teqc is for quality checking or qc-ing of satellite positioning data, mainly
NAVSTAR GPS data, but it will generally work for GLONASS and GSSP (geostationary signal
payload), though for these latter systems the qc is "lite" (without orbit determination).
To use teqc in a qc mode, try, for example:

teqc +qc fbar0010.97o
(assuming for the moment that the RINEX NAV file fbar0010.97o is not in the current

directory). First, notice the +qc option: i.e., turn qc on. Next notice that there is only a RINEX
OBS file as a target file. What you are doing here is running a qc-lite mode, i.e., devoid of any
satellite positioning information.
Executing the above should produce something if fbar0010.97o is a valid and complete
RINEX OBS file. Exactly what is does (at this point) should only depend on the default
qc-mode settings in teqc--which, incidentally, should represent what a majority of users feel
they want from routine qc processing. However, nearly all qc parameters can be effected by
the appropriate configuration option. And, yes, you can look at the qc configuration options to
see what exactly you can effect, by:

teqc +qc ++config 2> /dev/null | more
(Some notes: Notice how this differs from executing just teqc ++config 2> /dev/null. In short,
with the +qc option, you are turning on the qc mode of teqc and with ++config asking for a
complete configuration option set, so now you get all the qc mode options following the
general teqc options. Also, a pipe to more is used because there are a lot of qc options!)
Now let's look at what the execution of teqc +qc fbar0010.97o (perhaps followed by a pipe to
more) finally produced. Assuming a successful run, the user should have noticed at least two
things: 1) There should have been a set of characters going to the screen (actually, to stderr)
during execution which looked like

qc lite>>>>>>>...
(with perhaps some other non-critical stderr messages mixed in). This is just a linear analog
indicator of how teqc is marching through the observation epochs, where the length of the final
indicator matches the "length" of the ASCII time plot (default of 72 characters). 2) There was a
screen dump (actually, to stdout) of the ASCII time plot and some simple statistics at the end.
(Note: This latter part to stdout is roughly equivalent to what was written to the *.YYS file by the
original UNAVCO QC program.) Also, in the future, what is dumped to stdout may change,
though this will be settable with one or more configuration flags.
Next, look at the result of

teqc +qc ++config 2> /dev/null | grep report
The result should be something like:

+l[ong_report]
+s[short_report]

If either of these configuration options do, in fact, start with a +, then you should have a
fbar0010.97S file in your directory, which is your qc report file on fbar0010.95o. There are two
possible segments to this report: a possible short report segment followed by a possible long
report segment. You should have the short segment if your configuration says +s..., and it
should be absent if your configuration says -s.... For now, the short report segment is identical
to the information being dumped to stdout. You should have the long report segment if your
configuration says +l..., and it should be absent if your configuration says -l.... (The long report
segment takes the place of what used to go to stdout in the original UNAVCO QC.)
Next, look at the result of

teqc +qc ++config 2> /dev/null | grep plot
If the result is

+plot
then you probably have one or more plot files (in UNAVCO COMPACT format), e.g.:

fbar0010.ion if +ion was set (ionospheric delay observable, in meters)
fbar0010.iod if +iod was set (derivative of ionospheric delay observable, in
meters/second)
fbar0010.mp1 and fbar0010.mp2 if +mp was set (MP1 and MP2 observables, in
meters)
fbar0010.sn1 and fbar0010.sn2 if +sn was set (S/N for L1 and L2, in arbitrary units)

These files can be viewed graphically using UNAVCO's gt or qcview executables. Using a
configuration option of -plot suppresses all plot files. You can also convert the ionospheric
delay observable and its derivative to relative changes in TEC (Total Electron Count == 1e16
electrons/m^2) and its derivative by using +tec.
Next, move or create fbar0010.97n in the your working directory and execute:

teqc +qc fbar0010.97o
or

teqc +qc -nav fbar0010.97n fbar0010.97o
Here you are inputting an additional file, either by default in the first example or explicitly by
using the -nav configuration option followed by the name of a RINEX NAV file. You are now
running teqc in a qc-full mode, i.e., satellite positioning information is present, and if enough
information is present (satellite ephemerides, plus receiver P1, P2, or C/A codes) then a
position for the antenna is attempted. There is no additional flag to use the qc-full mode. If you
supply binary data or NAV files or if teqc automatically finds a matching NAV file name to the
supplied OBS file name, you are using qc full; if you don't supply NAV files and there is no
matching NAV file, you are using qc lite. If you are supplying binary data, there is no a priori
way to determine if ephemeris records are present or not without reading the entire input first,
so qc-full is assumed in this case.
The case-sensitive algorithm for building matching NAV file names from OBS file names is as
follows, where YY represents two digits, e.g. YY == 97:

*.YYo -> looks for *.YYn

*.YYO -> looks for *.YYN

*.obs -> looks for *.nav

*.OBS -> looks for *.NAV

Other cases for this NAV file auto-matching can easily be added to the code.
During execution (which will probably take slightly longer than the qc-lite run), you should now
see:

qc full>>>>>>>...
going to stderr (and, again, possibly other stderr stuff mixed in). Assuming a successful run,
the general things that happen should be similar to what happened with the qc-lite run,
expanded to include information about satellite position (like elevation) and antenna position.
The biggest additional items, assuming a +plot configuration, are the additional COMPACT
plot files:

fbar0010.azi andfbar0010.ele (satellite topocentric azimuths and elevations as

viewed from the antenna for every satellite for which an ephemeris was present in the
NAV file)

One of the fundamental design criteria was to have teqc dynamically switch from a qc-lite
mode of operation to a qc-full mode of operation on a per satellite basis as an ephemeris
became available. This is especially important for analyzing real-time data streams. For the
normal "post-processing" (i.e., files are available), the same scheme applies. If no ephemeris
is available for a particular satellite from the supplies NAV file(s), but observations for that
satellite are present, the observations are completely processed using the qc-lite mode, even
though the qc-full mode is on in general. Appropriate indicators are supplied in report that this
occurred.

Using teqc with Multiple File Input or File Names Including a ,
(comma)

Section 12.

Cases always arise where you want to include multiple files as input. Let's look at some of
these cases. First, there may be multiple configuration files:

teqc -config my_config_1 -config my_config_2 -config my_config_3 {rest of
command}

which works just fine, and is exactly equivalent to:

teqc -config my_config_1,my_config_2,my_config_3 {rest of command}
or

teqc -config my_config_1,my_config_2 -config my_config_3 {rest of command}
or

teqc -config my_config_1 -config my_config_2,my_config_3 {rest of command}
Notice that a default comma delimiter , is used to separate the different configuration file
names if they are used as a single argument after a -config option flag. A comma delimiter
was selected since it usually is not a shell metacharacter and is rarely used as part of a file
name. If in some circumstance, a comma ends up being part of the name of a input file, then it
will be necessary to use the -delim option before that file name is used. For example, suppose
that the configuration file called strange,one existed and for some reason either you couldn't
or didn't what to rename it to a name that did not include a comma, but you wanted to use it
and you didn't know about UNIX ln. Well, to do it, you could use

teqc -delim= -config strange,one {rest of command}
Here you have changed the delimiting character to = (equal sign), so now strange,one is
interpreted as a single configuration file name, instead of two called strange and one. Be
forewarned, however: like most everything else, you only get to change the delimiter character
once.
The same type of scheme works for inputting multiple NAV files for a qc-full run:

teqc +qc -nav fbar0010.97n -nav fbar0020.97n -nav fbar0030.97n {rest of
command}

is identical to

teqc +qc -nav fbar0010.97n,fbar0020.97n,fbar0030.97n {rest of command}
Recall the ordering option hierarchy for configuration files: the files to the left will be processed
first. For inputting multiple NAV files with the +qc option, teqc sorts the ephemerides of each
SV so there really isn't any need for you to keep to any special ordering, though the initial
setup is slightly faster if you adhere to a TOW time-sequential multiple NAV file input.
Currently, all the target file names at the end of the command line are considered to be part of
the single execution of teqc. For example, what should you expect when executing this:

teqc +qc -nav fbar0010.97n fbar0010.97o fbar0020.97o fbar0030.97o
You turned on the qc mode with +qc. Since you are supplying a NAV file with -nav this will be a
qc-full run. Assuming for a moment that each of the OBS files are for 24 hours (and no errors
were encountered), what you will receive is a qc report on for the entire 3-day observation
period starting with the first observation on 1 Jan 1997 and ending with the last observation on
3 Jan 1997. (The ephemeris information from fbar0010.97n may be a little out of date by the
3rd, but that's OK for this discussion.) What you will not receive (as teqc is currently
implemented) is three separate reports and possibly three sets of plot files, i.e. one report (and
set of plot files) for each of the supplied OBS files.

Time-Windowing with teqc
Section 13.

As mentioned above in Section 9, teqc always windows the input data (somewhere between 1
Jan 1980 and 31 Dec 6075), though this is usually transparent to the user. There are eight
different windowing strategies for you to be aware of; different information is supplied (or not
supplied) to use each of these different strategies.

The nomenclature in the following table is as follows. A bracketed value is one determined by
teqc from the target files (i.e., implied), whereas a non-bracketed value is explicitly supplied by
the user (via a configuration option using the command line, $teqc_OPT, $teqc_CONFIG, or
another configuration file). start refers to the argument of the configuration option flag
-st[art_window], delta refers to the arguments of the configuration option flags +d... or -d...,
and end refers to the argument of the configuration option flag -e[nd_window], and dir refers
to whether a + or - was used with the delta configuration flag. The eight different windowing
options are:

1. [start] [end] (user supplies nothing except target files)

2. [start] delta (dir == +) e.g. +dh 7 for 7 hours from the start

3. delta [end] (dir == -) e.g. -dm 60 for 60 minutes from the end

4. start [end]

5. [start] end

6. start end

7. start delta (dir == + or -)

8. delta end (dir == + or -)

where the missing value is computed by teqc. Let's take a look at what these cases mean, and
you'll see that this is really simplier than it initially appears.
For case (1), probably the most common, the user supplies nothing but the list of target files.
teqc then does a fast search of the target files to be processed to determine the start and end
times. If you input a file type for which a fast search algorithm has not yet been written or use
stdin as the target, then you must use explicit windowing (case (6), (7), or (8)). Currently, the
fast search algorithm has been implemented only for RINEX OBS, NAV, and MET files. The
start time will be the first observation epoch or event epoch (RINEX OBS or MET files) or the
first TOE epoch (RINEX NAV files) in the first target file listed and the end time will be the last
epoch in the last target file listed. (As mentioned above, if your target files are not listed in a
time-sequential order, or if one or more of your target files are not internally time-sequential,
something will run afoul later in the execution process and teqc will tell you about it.)
As an example, let's return to:

teqc +qc -nav fbar0010.97n fbar0010.97o fbar0020.97o fbar0030.97o
Here the target files to be processed are fbar00*0.97o. The fast search looks at the beginning
of fbar0010.97o to determine the start time of the window and looks at the end of
fbar0030.97o to determine the end time of the window. No need you to worry about much of
anything here.
For cases (2) and (3), the user supplies a +d... option or a -d... option with an argument.
Currently, ... could be Y for years, M for months, d for days, h for hours, m for minutes, or s for
seconds. The leading + or - means "give me a positive time delta from the start" or "give me a
negative time delta from the end", respectively. Let's suppose, again, that the fbar00*0.97o
files above are each 24-hours worth of data. Then the configuration option +dh 6 together with
the file fbar0010.97o would mean: "start at 00:00:00.0 1 Jan 1997 and end at 06:00:00.0 1 Jan
1997", i.e. a delta of +6 hours from the (implied) window start. The configuration option -dh 6
together with the file fbar0010.97o would mean: "start at 18:00:00.0 3 Jan 1997 and end at
00:00:00.0 4 Jan 1997", i.e. a delta of -6 hours from the (implied) window end.
For cases (4) and (5), you supply explicitly either just a new partial or complete start time or
just a partial or complete end time using the configuration option flags -st or -e with an
argument. The argument for a complete start or end time is easy to understand; it has the
format of [YY]YYMMddhhmmss[.sss...], though metacharacters like : (colon), , (comma), ;
(semicolon), / (slash), \ (backslash), + (plus), - (minus), = (equal), _ (underscore), ~ (tilda), #
(pound) can be used to improve readability. I.e.

19970229105937
970229105937
970229105937.000000
1997-02-29_10:59:37

all mean "1997 Feb 29 10:59:37.000000", given that the base year is 1980 (see result of
executing teqc ++config: base year of 1980 implies that all two-digit years are assumed to
occur from 1980-2079 A.D.) Note: Always be sure to include two digits for the month number,
day number, hour, minute, and second.
Let's suppose we return to our command

teqc +qc -nav fbar0010.97n fbar0010.97o fbar0020.97o fbar0030.97o

but want to start the time window at "1997 Jan 1 00:09:30.004". You could use the
configuration option -st 970101000930.004 and things will work fine, though a bit cumbersome.
There is, in fact, another way to use the -st option by using the partial argument format (or
"masked" format), for example

-st 930.004
-st 9:30.004
-st 00:09:30.004

all of which are interpreted as the same thing: 9 minutes and 30.004 seconds. Here, teqc
recognizes that you are suppling only a partial start time (using minutes and seconds, in this
case). It then gets the real start time as it would in case (1) or case (2) using the fast search
algorithm, and then applies a mask overlay to the start time and inserts your partial start time
(changing just the minutes and seconds, in this case). So the argument for -st or -e has a
format closer to:

[[[[[[YY]YY]MM]dd]hh]mm]ss[.sss...]
In other words, it is assumed that you are supplying whole seconds, to which you can further
specify decimal seconds if desired. Numbers to the left of the seconds are interpreted as
minutes, hours, and so on.
For cases (6), (7), and (8), you are explicitly assigning the window of interest, and, again,
partial arguments can be used for the start and/or end times. You can supply an explicit (partial
or complete) start and end time, explicit (partial or complete) start time with a delta (a-la cases
(2) and (3)), or an explicit (partial or complete) end time with a delta.
By using case (7), you can easily force your teqc processing to start at the same time of day
and span the same length of time, regardless of the start and end times of the input target files.
For example, suppose you wish to have a start time of 00:00:00.0000000 at each day and
want exactly 24-hours worth of teqc processing. This is easily accomplished with something
like

-st 00:00:00 +dh 24.
The start and end times of the time window are both inclusive, i.e. these times are included in
the window. Therefore, if in the preceeding example you want to extract just short of 24 hours
where the sampling interval is perhaps 30 seconds, then you could use

-st 00:00:00 +dm 1439.5
which would have a start time of 00:00:00.0000000 and an end time of 23:59:30.0000000.
You might think that just about every conceivable type of window possibility has been covered.
Well, not quite yet. You can even introduce holes in the overall time window during which you
are not interested in anything. teqc skips over all input that occur during your specified window
holes, hole boundaries inclusive. Here the configuration option -hole followed by a file name is
used. The file named is an ASCII file listing the holes that you want in your time window. The
format of the hole file for each window hole is always

[YY]YY MM dd hh mm ss[.sss] [YY]YY MM dd hh mm ss[.sss]
where only the presence of white-space as delimiters is needed. Thus, the file:
97 2 15 00 00 00 1997

 2 15 03 00 00.00

 97 2 15

06 00 00 97 2 15 09 00 00

is perfectly OK (though a little hard to read by humans). A more readable file (for humans) that
does the same thing is:
97 2 15 00 00 00 97 2 15 03 00 00

97 2 15 06 00 00 97 2 15 09 00 00

Obviously, this is a listing of start and end times for each hole desired. How many holes can
you list in a file? As many as you want (or until computer memory is saturated). How many files
do you get to name with the -hole option for each teqc run? Currently, one, so make sure it
includes all the holes you want for the execution. Also remember: each hole includes the exact
start and stop time of the hole.

Splicing with teqc
Section 14.

Recall that executing the command

teqc fbar0010.97o
basically spews the contents of fbar0010.97o back out to stdout. Suppose you have the
RINEX OBS files fbar0010.97o for 1 Jan 1997 and fbar0020.97o for 2 Jan 1997 and you want
to combine them into a single RINEX OBS file. It would have been easy if the RINEX standard
had been written so that two RINEX files could be simply concatenated to one another to
produce a new valid RINEX file, a la the UNIX cat system command:

cat fbar0010.97o fbar0020.97o > oops0010.97o
But, alas, the RINEX standard does not allow this sort of obvious simplicity and thus the file
oops0010.97o is generally useless.

However, teqc takes care of the RINEX-idiosyncratic boundary between the two files. Thus

teqc fbar0010.97o fbar0020.97o > good0010.97o
or using regular expressions (most UNIX shells)

teqc fbar00[12]0.97o > good0010.97o
produces a valid RINEX file, good0010.97o, with an added comment at the boundary:
RINEX FILE SPLICE
COMMENT
(Note: This splice comment occurs only in a spliced RINEX OBS file, since the current RINEX
standard does not allow for comments after the headers of RINEX NAV and RINEX MET files.)
Multiple files can be spliced together and any of them can be for any session length. However,
the order (like always) must be time-sequential. Header information from files after the first on
are winnowed to preserve only pertinent parts, and this can be further reduced by including the
-phc = delete post-header comments option, e.g.

teqc -phc fbar00[12]0.97o > good0010.97o
Receiver clock reset information is not carried across the splice boundary of RINEX OBS files.

Thus if there are millisecond receiver clock resets in the first file OBS file, and the second OBS
file has these millisecond resets initialized back to zero, there will be a n-millisecond receiver
clock jump at the boundary of the OBS splice.
If desired, you can combine the window and splice operations in a single command. Use any
of the windowing options in combination with the splice procedure.

Translating with teqc
Section 15.

teqc is being enhanced to handle a number of native binary formats from various receivers.
For now, teqc handles common formats for many dual-frequency (L1 and L2) and a few
single-frequency (L1) receivers. The general use of teqc for all native binary formats is similar.
You need to specify three things:

1. the general type of receiver

2. the general type of native binary format from this receiver,

3. what you are interested in extracting.

(The big-endian/little-endian problem of the different binary formats is automatically handled by
teqc, so don't worry about it.)
Teqc also reads non-native formats, at the present time limited to the RINEX format, the
ARGO format, and BINEX. As you have probably already determined, the RINEX format is
assumed by default. To force teqc to interpret the input in the other non-native formats, use:

• -argo for the ARGO format

• -binex for BINEX

(Note: there is no corresponding -rinex flag for RINEX since this is always assumed to be the
default.)
For native or receiver specific formats, an option flag may be needed to specify the general
type of receiver, and its argument is used to specify the receiver format:

• -aoa or -jpl for a TurboRogue/TurboStar or Benchmark receiver

o cb -- ConanBinary

o tb -- TurboBinary

• -ash for Ashtech

o d -- B/E/S/D download fileset (B-file required)

o s -- RS-232 stream format

o r -- R-file

o u -- U-file (note: -ash u is always required for a U-file)

• -cmc for Canadian Marconi Corporation

o allstar -- Allstar format

• -leica for Leica

o lb2 -- LB2

o mdb -- MDB

o d -- DS download fileset (OBS file required)

• -motorola for Motorola

o oncore -- Oncore format

• -rock for Rockwell

o z -- Zodiac format

• -ti for Texas Instruments

o g -- TI-4100 GESAR and BEPP/CORE formats

o rom -- TI-4100 ROM format

• -tr for Trimble

o d -- DAT/ION/EPH/MES download fileset (dat file required)

o s -- RS-232 RT17 stream format

o tsip -- TSIP

Support for additional receivers will probably added in the future:

• -topcon for Topcon

• -javad for Javad

For translation to RINEX, the user can specify what type file is of primary interest; if none is
specified, RINEX OBS is assumed. For example, using either the receiver argument (i.e.
format specification) or appending an o onto the end of format specification means to extract
OBS by default, and so on:

• -tr d or -tr -do: translation of Trimble DAT to RINEX OBS

• -aoa cbn: translation of ConanBinary to RINEX NAV

• -ash rm: translation of Ashtech R-file to RINEX MET

Suppose, for example, that the file fbar.bin contains the the Trimble RT17 for GPS week 866,
11 Aug 1996 - 17 Aug 1996 from a Trimble SSE receiver. Then, execute

teqc -tr s -week 866 +nav fbar2240.96n fbar.bin > fbar2240.96o
Let's dissect the command line. First the -tr option flag tells teqc that the target file(s) are from
a Trimble receiver. The argument to -tr is s (equivalent to just so), which tells teqc that the
native format is the RS-232 RT17 data stream and that you want to send translated RINEX
OBS to stdout. But the RT17 file fbar.bin, in general, is allowed to contain both record types
for both GPS observations and ephemerides. The command line option +nav fbar224.96n
tells teqc to dump any ephemeris information in fbar.bin to the RINEX NAV file fbar2240.96n;
if there were no ephemeris records in fbar.bin, then fbar2240.96n will be empty after
execution is complete.
If you had had a Trimble *.dat file, fbar.dat, the analogous command line would have been:

teqc -tr d -week 866 +nav fbar2240.96n fbar.dat > fbar2240.96o
Now, what about the option -week 866 (or using an alternative format of -week 96:224)? By
doing this, you are explicitly telling teqc that the observation data starts in GPS week 866; it
may run on into GPS week 867 (or later), but teqc will track this. If you had executed the

shorter command

teqc -tr s +nav fbar2240.96n fbar.bin > fbar2240.96o
during the week of 11 Aug 1996 - 17 Aug 1996, and your CPU system time had been set
corrected, then teqc would have computed the GPS week and used that (after issuing a
warning to stderr: recall executing just

teqc
is one way for you to find out what GPS week teqc thinks it is).
Why must the GPS week be specified? It turns out that there is no information in the Trimble
RS-232 GPS observation records (and some other native formats) to indicate which GPS
week it is from; this is ancillary information that must be recorded external to the contents of
the observation records. (There is GPS week information in the Trimble ephemeris records,
but there is no guarantee that there will be any ephemeris records in an arbitrary RT17 data
segment, let alone an ephemeris record in advance of all observation records. A similar
argument applies for Trimble *.dat files: there is no GPS week information in Trimble's DAT
observation records--though the GPS week appears in other records which are usually in a
*.dat file. Additionally, when using teqc with DAT files as target files--not stdin--teqc will
attempt to find a name-matching MES file to help resolve the GPS week problem. But, again,
there is no guarantee that a matching MES file is present.)
Incidentally, the GPS week can be supplied by several formats when using the -week option:

-week WEEK (WEEK = GPS week, e.g. -week 866)
-week [YY]YY:DOY (YY = year, DOY = day of year, e.g. -week 96:228 or -week
1996:228)
-week [YY]YY:MM:DD (YY = year, MM = month, DD = day, e.g. -week 96:8:15 or
-week 1996:8:15)

You can also use a / (slash) as the delimiter instead of a : (colon). Remember: you are
specifying the GPS week when the data begins.
All or part of the RINEX header field PGM / RUN BY / DATE is filled in automatically by teqc
during translation. The program field is filled in with the name of the executable (teqc in this
case) and its current version number.
The date is filled in by a query of the system time, and we are assuming that the system time is
set correctly. On UNIX systems, this date is UTC, which is then written to the RINEX file. On
Microsoft systems, this date may or may not be UTC. For Microsoft Windows 95/98/NT
systems, the date should be set according to a specific time zone, or with a known offset
between local time and UTC. For these cases, the date obtained should correctly be UTC.
For Microsoft DOS or Windows (or Windows 95/98/NT/2000/XP, in case teqc cannot
determine the OS), teqc will query for the environment variable $UTC_MIN_OFFSET, which if
set, should contain the numerical value of minutes that should be added to the system time to
yield UTC. The switches between Daylight Saving Time and Standard Time will have to be
done manually. If this environment variable is not set, the system time will be queried and put
into the date field as "Lcl" = Local time.
Now examine the command line:

teqc -tr sn -week 866 +obs fbar2240.96o fbar.bin > fbar2240.96n
Here the argument to the -tr option flag is sn, i.e. your main interest is the ephemeris

information in fbar.bin, which is dumped to stdout as a RINEX NAV file (and here redirected to
the file fbar2240.96n). The +obs fbar2240.96o option instructs teqc that if any observation
records are encountered in the target fbar.bin, they are to be decoded and written as a RINEX
OBS file fbar2240.96o. Again, the option -week 866 is needed to determine the epochs of the
observation data, not the ephemeris data.
Again, the analogous command line for a Trimble *.dat file would be:

teqc -tr dn -week 866 +obs fbar2240.96o fbar.dat > fbar2240.96n
If you execute the above commands for the RS-232 file fbar.bin and do not have the
environment variables $teqc_OPT or $teqc_CONFIG set (or if you do have them set but they
do not contain any -O.* or -N.* header modification options), then you will find that most of the
RINEX header fields in fbar2240.96o and fbar2240.96n are blank. Why? Like the GPS week
in RS-232 observation records, there are no fields in the Trimble RS-232 data records to hold
the type of information that would occupy these RINEX fields. About the only fields that are
filled automatically by teqc are those for the initial RINEX VERSION / TYPE record (which are
implied), the default WAVELENGTH FACT L1/2 record (implied by the receiver type, in this
case), and the # / TYPES OF OBSERV record. However, you can override these blank values
by specifying your own -O.* and/or -N.* options using the command line, $teqc_OPT,
$teqc_CONFIG, or other configuration files. This is using teqc simultaneously in edit and
translate modes.
The above translation procedure can also be windowed. Currently, though, fast search
algorithms have not been written for any binary format, so you must use an explicit windowing
(windowing options (6), (7), or (8)) or specify the window delta time from the start (windowing
option (2)).
The translation procedure can also be qc-ed. Here let's assume that you have a Trimble *.dat
file called fbar.dat. For the normal type of qc operation, try something like:

teqc +qc -week 866 [-st 960811000000] +dh 24 -tr d \
 +obs fbar2240.96o +nav fbar2240.96n fbar.dat | more

where now, stdout will contain what you now expect from a qc-mode execution, but the RINEX
OBS file is still being output to the file fbar2240.96o using the option flag +obs. The -st option
is optional, indicated by the square brackets. You use the explicit windowing (in this example,
windowing option (7) using both the -st option and the +d* option).
If translating to RINEX OBS, an auto-identification feature of teqc may eliminate the need to
specify the input format. The auto-identification feature has been developed for all the above
formats except the Ashtech U-file (which always requires -ash u). To make sure that teqc is
able to identify a particular file, use the +mdf option. Thus:

teqc +mdf fbar.dat
should return

probable format of fbar.dat: Trimble download
teqc: ... exiting

The assumed stdout for any translation is always RINEX OBS. Therefore with the
auto-identification:

teqc -tr d trimble.dat > RINEX_OBS

can be reduced to:

teqc trimble.dat > RINEX_OBS
The auto-identification will work most of the time but is not guaranteed! This is because the
auto-identification is based on reading only a small number of bytes (usually only 1-4 bytes) at
the beginning of the file. This is probably most useful if you are testing files manually on the
command line. For use of teqc in scripts, use explicit receiver/format options.
To review, there are a few things to remember when using binary data:

1. You may need to specify the record type of primary interest, e.g. using the -tr option for Trimble data,

with a d argument for download (*.dat) format or s for RT17 stream format. If not doing a qc mode, the

RINEX file type that corresponds to this record type is dumped to stdout, e.g. if -tr do is used, RINEX

OBS file information is dumped to stdout. (For most cases when doing qc mode, qc information is

dumped to stdout.)

2. You should specify the GPS week during which the binary stream starts, or you accept your computer

system version of the local time from which the GPS week is computed. For most formats, you might

first try leaving off the -week option, though occasionally the record containing the initial GPS week is

corrupted, bogus, or missing, and (depending on the situation) teqc might try to use the system time

for the GPS week. Additionally, some Trimble MES files have been found that contain strange years

like "19116"!.

3. If doing a qc mode, you must supply some information about the length of the time window of interest,

using either the +d* flag, or one of the explicit window options (6) - (8). If doing the former, the time of

the first data observation becomes the start time of the window. The partial argument format for the

-st and/or -e options also work.

4. If doing a qc mode, stdout is used to dump a copy of the short report segment. In order to capture the

RINEX file type that would have gone to stdout if not doing a qc mode, specify the RINEX file name by

using a +obs, +nav, or +met option.

Specific details, known limitations, etc. (for any problems, contact teqc technical contact for
help):

Special Translator Considerations and Options
Section 16.

There are some translator options which are not specific to a particular native binary format.
There are

-L2 to indicate an L1-only (no L2 tracking) receiver
-P to indicate a P-codeless receiver

Using these options when needed helps set the default set of RINEX OBS observables. For
receivers that are both L1-only and P-codeless, use both -L2 and -P.
Two useful options that can be used anytime, but are sometimes very helpful prior to
translating, are the metadata extractions options +meta and +mds--which also work with
RINEX as the target files. For example,

teqc +meta trimble.dat

should return a 19-line metadata summary about the Trimble DAT file trimble.dat (assuming
that the auto-identify function works correctly). Executing

teqc +mds trimble.dat
returns "metadata short"--a shorthand for just the start and end times of the file, plus the file
size in bytes. If either of these terminate in a line like:

week: ####
this is an indication that you should use the -week option to set the starting GPS week to the
indicated value, e.g.

teqc -week #### +meta trimble.dat
There are several translator options which are specific to a particular native binary format.

• Trimble *.dat or RT17 Data Formats
There is a set of options to remove half-wavelength phase data (squaring mode) from the
translated RINEX OBS file. These are -L1_2 or -L2_2 to remove squared L1 or squared L2,
respectively. Of the types of binary data that teqc currently handles, the only types where
these flags may be of use is with the Trimble *.dat or RT17 data stream formats.
Also, when translating *.dat from P-codeless receivers (e.g. SD, STD, SST), you probably will
have to use the -P option. This informs teqc that the data has no P-codes, and it performs
bit-cleaning on certains flags. Without this bit-cleaning, you are likely to only get the L2
observable.
When using the newest generation of receivers (e.g. SSE, SSi, 4700, 5700), a few epochs of
squared L2 data for a particular SV may be reported. Normally, these epochs are translated
with the appropriate bit-1 of the LLI flags added to the RINEX OBS file with the (squared) L2
data (see teqc's handling of wavelength factors for more information). These L2 observables
can be entirely removed during translation by using the option -L2_2, i.e. no squared L2 data is
passed to the RINEX OBS file.
When using a Trimble DAT file as a target file (and not stdin), teqc attempts to find a Trimble
MES file with the same path and name prefix. The name matching uses:

*dat -> looks for *mes

*DAT -> looks for *MES
If a matching MES file is found, it is read to obtain the starting GPS week and certain metadata
(though there is no guarantee that this information is correct).

• ConanBinary:
Teqc should not be used to translate ConanBinary from the early Rogue receivers. The data in
this type of ConanBinary is SV-ordered, rather than time-ordered, and teqc will only translate
the first SV PRN number of data. (Use JPL translators for this type of ConanBinary.) For
ConanBinary from the TurboRogue/TurboStar and Benchmark receivers, teqc will work
correctly.

• TurboBinary
TurboBinary data can include normal-rate data (record 0x68), 1-sec rate data (record 0x1a), up
to 50 Hz-high-rate data (records 0xdb and 0xdc, plus using information in record 0x1a), and
the so-called "30-1 second" format which is a mix of normal-rate data (record 0x68) and 1-sec

LC data (record 0xde). The default translation is to do all these record types. However, you can
tailor your translation with these options:

-TBhr
leave out high-rate data
-TB1s
leave out 1-sec data (this also deletes the high-rate data)
-TBnr
leave out the normal-rate data
-TBLC
leave out the LC data records

The result of various option combinations is:

(no options = default) translate all records
-TB1s
translate only normal-rate data
-TB1s -TBhr
(same as -TB1s) translate only normal-rate data
-TBnr
translate 1-sec and high-rate data or LC data (whatever is left)
-TBhr
translate 1-sec and normal-rate data
-TBhr -TBnr
translate only 1-sec data
-TBLC
leave out the LC data records, leaving the normal-rate
-TB1s -TBnr
translate no observation data (oops!)
-TBLC -TBnr
translate no observation data (oops!)

For TurboBinary data collected with firmware dated before about 1 Dec 92 (version 2.5 or
earlier), it is necessary to apply a correction to obtain valid pseudoranges. To activate this
correction, use the option +TB_ca_fix.
For TurboBinary data collected with a Benchmark ACT receiver, you may want to try the -aoa
tbY option to generate the RINEX OBS file. This will use the C/A-derived L1-phase value for
the RINEX L1, rather than the noisier Y1-codeless derived L1-phase value.

• Ashtech Data Formats:
For all Ashtech formats except the U-file "data mode 7", the internal "smoothing" corrections to
the pseudoranges are not applied by default; specify the option +smooth to turn this on. (The
pseudorange smoothing appears to be done by default in the Berne ASRINEXO translator and
the Ashtech ASHTORIN translator.) For the U-file data mode 7, the pseudoranges are either
stored with or without the smoothing corrections applied; there is no way to change this during
the translation.
Also, the RINEX L1 observable from teqc may be noted to vary slightly (by up to 1 cm or so)
from the L1 observable reported by other translators. This results from the use of the L1-phase

value reported in the P1-code data block, rather than the L1-phase value reported in the
C/A-code data block. Preliminary testing at MIT suggests that the L1-phase value in the
P1-code data block results in a slightly lower RMS. For the time being, teqc will continue to
report this L1-phase value, though you can switch to the L1(C/A) by using the +CA_L1 option.
For Ashtech download file sets, teqc may only work correctly for "Version: 3" type downloads.
For example, the older "Version: 1" and "Version: 2" type downloads will not translate correctly
at the present time, and the Berne ASRINEXO or the Ashtech ASH2RIN translators should be
used, or try the Ashtech convert.exe program to change the B-file to a Version 3 B-file.
A bug in the some earlier firmware for the Z-XII resulted in the millisecond clock resets being
applied an epoch too late. If you notice periodic millisecond slips (occurring just prior to the
reported clock reset times), try using the option +Ashtech_old_clk_reset during translation.
This should remove this receiver firmware artifact from the data.

Wavelength Factors: What teqc Does With Them
Section 17.

Wavelength factors, i.e. specifying whether L1 or L2 is being recording in a full-wavelength or
half-wavelength (squaring mode), can be done in various ways in RINEX. In short, 1) there is a
required RINEX header record WAVELENGTH FACT L1/2 specifying the default wavelength
factors for L1 and L2 for all SVs, 2) there can be other WAVELENGTH FACT L1/2 records
specifying the a different set of wavelength factors for specific SVs, and 3) there can be the
use of bit-1 in the LLI flag of the L1 or L2 observations to indicate the opposite state of
wavelength factor from the last WAVELENGTH FACT L1/2 record for a specific SV. The
possible set of values for any WAVELENGTH FACT L1/2 record is "1 0", "1 1", "1 2", "2 0", "2
1", and "2 2". Setting bit-1 of the LLI flag indicates a full-wavelength mode if the last
WAVELENGTH FACT L1/2 record for that frequency and that SV--somewhere earlier in
file--was set at "2" (half-wavelength). Likewise, setting bit-1 of the LLI flag indicates a
half-wavelength mode if the last WAVELENGTH FACT L1/2 record for that frequency and that
SV--somewhere earlier in the file--was set at "1" (full-wavelength).
The methodology used by teqc is a simple specific subset of all of the possibilities for RINEX,
but still retains all the same information. On output (either when translating from native binary
formats to RINEX or RINEX to RINEX), only the default WAVELENGTH FACT L1/2 header
record will appear and only the L1/L2 states of "1 1" or "1 0" are used. In other words, the
default setting reported in the RINEX file header is always full wavelength for L1 and L2 (if
present), even for squaring receivers. Specific half-wavelength observations are indicated by
setting the appropriate bit-1 of the LLI flag on the L1 or L2 observations. Period.
During translation, you have the option of excluding all half-wavelength observations. To do
this, include either -L1_2 or -L2_2 to exclude squared L1 or L2, respectively. This works either
when translating native binary formats to RINEX or during any RINEX to RINEX operations.
The default settings of teqc for wavelength factors are +L1_2 and +L2_2, i.e. include all
half-wavelength observations.

Basic Commands: A Review

Section 18.

The following examples assume that the shell environment variables $teqc_OPT and
$teqc_CONFIG are unset or empty:
teqc

forces all initialization and reports the current GPS week based on the system time
teqc +id

identification of the teqc version you have, plus other information like your computer
system time, sent to stderr

teqc -help or teqc +help
complete option list is spewed to stderr

teqc +err my_help_file +help
complete option list is spewed to file my_help_file instead of stderr; +err option
redirects all stderr to specified file

teqc ++config
dumps the current configuration to stdout

teqc +qc ++config
dumps current configuration and default qc settings/values to stdout

teqc +v RINEX_file
reads the RINEX file RINEX_file and verifies its format; nothing is sent to stdout,
though a verification message is sent to stderr

teqc ++config RINEX_OBS_file
dumps current configuration and OBS header settings/values of RINEX_OBS_file to
stdout (can use RINEX NAV or MET file also)

teqc RINEX_file
reads and spews RINEX_file (with possibly some slight formatting improvements)
back out to stdout

teqc +dh 6 RINEX_OBS_file
reads and spews header and first 6 hours of observations of RINEX_OBS_file back
out to stdout

teqc RINEX_file_1 RINEX_file_2
reads and splices the two RINEX files RINEX_file_1 and RINEX_file_2 back out to
stdout as a single RINEX file; target RINEX files should be of the same type and in
time order

teqc -O.mo foobar RINEX_OBS_file
read RINEX_OBS_file and change monument name to "foobar"; edited RINEX OBS
file is spewed to stdout

teqc +qc RINEX_OBS_file
qc of RINEX_OBS_file; automatically searches for name-matching RINEX NAV file;
qc short report segment is spewed to stdout; full qc report and qc plot files written to
file system

teqc ++sym
symbol hierarchy of symbol codes and associated meanings for qc ASCII time plot are
spewed to stdout

teqc -tr do +nav RINEX_NAV_file trimble.dat
translate Trimble dat file trimble.dat; RINEX OBS file spewed to stdout; RINEX NAV
file written to RINEX_NAV_file

teqc -warn {rest of command}
shut off warnings going to stderr; other functionality remains

Using teqc in Scripts: Substitution for Batch Mode
Section 19.

Because teqc is 100% non-interactive, it is very well suited to be used in scripts and to be run
in background. In fact, this is precisely the reason it is designed to be 100% non-interactive.
Let's look at a simple script to translate Trimble *.dat files to RINEX and then qc the resulting
RINEX files:
#!/bin/ksh

for file in $*

 do

 echo $file

 teqc -O.int 30 -tr d +nav ${file%dat}97n $file > ${file%dat}97o

 teqc +qc -set_mask 15 -plot ${file%dat}97o > ${file%dat}qc

 done

#end of script

Make sure the script is executable, i.e. execute (in UNIX) chmod 755 script, where script,
say, is the name of your script file. To use it

script *.dat
Let's take a closer look at what is going on when executing this script. The shell expands the
*.dat on the command line to include all files in the working directory the end with .dat. Each of
these file names are processed by the script. The first line of the script forces the script to be
run in a Korn shell (ksh). The first real part of the script is to merely echo the name of
each .dat file. Next, each .dat file is translated, with a sampling interval of 30 seconds being
inserted into the header. The resulting RINEX NAV and OBS files will have the same prefix as
the .dat file, but will end in 97n and 97o, respectively, rather than dat. Next, the RINEX files
are qc-ed, setting the elevation mask to 15° (overriding the default fo 10°). Since we are not
asking for COMPACT plot files (option -plot), only two qc files are created, again both having
the same prefix as the .dat file. The more obvious one will end with qc, redirected from stdout.
This is the short report segment (about one page in length). The other file created will end with
97S, and is the full report, including--in this case--both the short report segment (just like what
went to stdout) and the more detailed long report segment.
If you wish to suppress the short report segment in the report (the *.97S file), include a -s on
the qc command line. If you don't want any qc report file, include a -report on the command
line. There is no way to suppress the short report segment going to stdout by command line
option, but you can always use a > /dev/null on UNIX to eliminate the stdout.
Obviously, this script (as written) creates RINEX files named correctly according to the Berne
naming conversion for *.dat files collected only in 1997, though the script will function for most
*.dat files.

Notice that the GPS week has not been specified. For most *.dat files (at least from Trimble
receivers with recent firmware), one of the first records usually contains the GPS week that the
data starts. If this record is missing or is corrupted, then the resulting RINEX OBS file will
probably have the wrong dates for the observations, leading to a poor qc report. For these rare
*.dat cases, you must explicitly state the GPS week using the -week option.

Differences between teqc's qc mode and original UNAVCO QC
Section 20.

This section is only for those who are familiar with the original UNAVCO QC program (which is
no longer supported) and are making the transition to the new teqc +qc.
Interface Differences:

• replacement of file qc.inp with teqc command line options, or equivalent format in environment

variable $teqc_CONFIG, or in one or more configuration files which are accessed with the -config

filename option; all options have a reasonable default value so the user need not be initially

concerned with the details

• elimination of file qc.fil for batch modes; use a command line script instead

• elimination of auxiliary files like qc.tim or qc.sym

• roughly,

o original QC stdout is like the teqc +qc *.YYS qc report file

o original QC *.YYS file is like the teqc +qc stdout (qc short report segment)

Internal Differences (or Why the New QC Results Look Slightly Different From the Old QC
Results):

• (nominal) one pass of files in teqc [original QC often required two complete passes of each RINEX

OBS file]

• separation of NAVSTAR GPS, GLONASS, GSSP, and other systems [original QC designed for

NAVSTAR GPS only]

• well-defined symbol hierarchy for ASCII time plot [original QC had only a partially defined symbol

hierarchy]

• cubic spline xyz fits of SV orbits for elevation, azimuth estimates [original QC used direct linear fits of

elevation, azimuth which were only good for stationary antennas and were not smooth; algorithm

occasionally resulted in large errors in azimuth]

• improved multipath algorithm

• improved detection and reporting of observation data gaps [original QC often did not detect and report

long data gaps for individual SVs, and had no means of reporting short data gaps for all SVs]

• correct identification of SV data below elevation mask [original QC often falsely reported epochs

below elevation mask w/ data, when, in fact, the receiver stopped tracking when the SV was well

above the elevation mask]

• correct count of ionospheric delay slips and "observations per slip" [original QC would count the first

observation w/ both L1 and L2 as an SV started to be tracked again after it had been observed and

then set as an ionospheric delay slip]

• satellite elevation and azimuth accounts for WGS 84 ellipsoidal Earth model [original QC assumed

spherical Earth model, resulting in elevation errors up to 1/5° for mid-latitudes]

• more accurate tally of expected number of observations for each SV [for some data sets, original QC

sometimes reported more observations than expected, resulting in "%" values exceeding 100%]

• sign of clock resets shown on ASCII time plot [original QC did not shown the sign of the clock reset]

• correct reporting of indicators in ASCII time plot [original QC often did not show some clock resets,

sometimes incorrectly showed a clock reset to occur when there was none, and other minor problems

with indicators]

• does not produce any unneeded auxiliary files (like AUXFIL or temp.orb)

Interpreting teqc's qc Mode Output
Section 21.

The quality check output from teqc is in two portions, the short report segment and the long
report segment. The short report segment include an ASCII time plot and a summary report on
various parameters. The long report segment gives a more detailed breakdown on some of
these parameters either by SV or by elevation (if qc full).

Short Report Segment:
In the short report segment, one of the most compact pieces of information from a qc output is
the ASCII time plot. In this plot, a visual summary of various types of quality indicators are
displayed for each satellite as a function of time. The SV PRN number is displayed on both the
left and right side of the plot. The width of the ASCII time plot is controlled by the -w[idth]
option, and is normally set to 72, though it can vary from 1 to 255; with a width of 72 and
24-hours worth of observation data, each ASCII character "bin" represents exactly 20 minutes
of time. Each character shown in each spot in the ASCII time plot is the most significant item of
note that took place for all of the observation epochs represented by that bin, according to a
well-defined symbol hierarchy.
A listing of the entire ASCII plot symbol table can be dumped to stdout by executing:

teqc ++sym
Likewise, a summary of the symbol hierarchy table can be included in the short report segment
by including a +sym option with any qc-mode run. But in this tutorial, let's take a closer look at
the symbols and their hierarchy. The symbols used on each "SV" line are as follows, with the
first symbol having the highest priority in the symbol hierarchy, decreasing through the list:

C
a clock slip occurred; a clock slip is an MP1 and MP2 slip that occurred for all satellites
being observed (tracked) and had a value that was the same integral number of
milliseconds to a resolution specified by -msec_tol in milliseconds; detection is turned
off with -cl option
m
similar to a clock slip, but only some (i.e. not all) satellites being observed (tracked)
had an MP1 or MP2 slip that was an integral number of milliseconds, or the integral
number was different for the different satellites; note: if the millisecond slip tolerance is
1e-2 (see -msec_tol), then there is roughly a 2:100 chance that a random MP1 or

MP2 multipath slip will be tagged as an m, rather than M, 1, or 2 (see elsewhere in this
table)
I
ionospheric delay (phase) slip occurred; detection is turned off with -ion option
M
both MP1 and MP2 (code) slip occurred, but was not integral number of milliseconds;
detection is turned off with -mp option
1
only MP1 (code) slip occurred, but was not integral number of milliseconds; detection
is turned off with -mp option
2
only MP2 (code) slip occurred, but was not integral number of milliseconds; detection
is turned off with -mp option
-
for qc full, satellite was above elevation mask, but no data was apparently recorded by
the receiver; for qc-lite (no ephemeris information), the data gap must also be less
than the maximum specified (see argument of -gap_mx in minutes)
+
(qc full only) satellite was below elevation mask and a complete set of phase and code
data was collected
^
(qc full only) satellite was below elevation mask and a partial set of phase and code
data was collected
.
phase and/or code data for SV is L1 and C/A only & A/S is off; if qc full, satellite was
above elevation mask
:
phase and/or code data for SV is L1 and P1 only & A/S is off; if qc full, satellite was
above elevation mask
~
phase and/or code data for SV is L1, C/A, L2, P2 & A/S is off; if qc full, satellite was
above elevation mask
*
phase and/or code data for SV is L1, P1, L2, P2 & A/S is off; if qc full, satellite was
above elevation mask
,
phase and/or code data for SV is L1 and C/A only & A/S is on; if qc full, satellite was
above elevation mask
;
phase and/or code data for SV is L1 and P1 only & A/S is on; if qc full, satellite was
above elevation mask
o
phase and/or code data for SV is L1, C/A, L2, P2 & A/S is on; if qc full, satellite was
above elevation mask

y
phase and/or code data for SV is L1, P1, L2, P2 & A/S is on; if qc full, satellite was
above elevation mask
L
Loss of Lock indicator was set by receiver for L1 and/or L2; detection is turned off with
-lli option
_
(underscore) (qc full only) satellite between horizon and elevation mask with no data
collected by receiver; indicator is turned off with -hor option
` '
(blank) qc lite: no satellite tracked; qc full: no satellite calculated to be above horizon
(+hor option) or above mask (+hor option or both -hor and +mask options) (see also
-set_hor and -set_mask options)

Let's examine a simple example. Suppose that the horizon is set at 0° and the elevation mask
is set at 20°. Let's also suppose that the receiver starts tracking a particular satellite when it
reaches 25° of elevation and continues to track the satellite down to 5° of elevation. Let's also
assume that no slips occurred during tracking and that the +hor option is set. For qc full (SV
ephemeris available), the SV symbol track might then look something like one of the following:

A/S on: _____--oooooooooooooooooo+++++__

A/S off: _____--******************+++++__

 1 2 3 4 5 6

At time (1), the SV rises above the horizon (0°). At time (2), the SV rises above the elevation
mask (20°), but the receiver doesn't start tracking until is rises to 25° at time (3). Between
times (3) and (4) all phase and code observables are collected by the receiver (L1, L2, C/A,
and P2 for A/S on; L1, L2, P1, and P2 for A/S off). Data continued to be collected as the SV
dropped below the elevation mask at time (4) until the receiver stopped tracking at an
elevation of 5° at time (5). The SV finally sets below the horizon at time (6). For qc lite, the
above SV symbol track would appear as:

A/S on: ooooooooooooooooooooooo

A/S off: ***********************

 1 2 3 4 5 6

as teqc as no information about the elevation of the satellite.
If the -hor option is set, the above qc full SV symbol tracks would then appear as:

A/S on: --oooooooooooooooooo+++++

A/S off: --******************+++++

 1 2 3 4 5 6

so that you can determine everything you could with +hor set, except for the rise and set times
of the SV at times (1) and (2), respectively. For qc lite, the SV symbol tracks would remain the
same as before, since the options -hor and +hor are meaningless.
Any additional symbols that occur in an SV symbol track not in the above examples fall into a
"not so good" category, though seeing a lot of - symbols in a qc full output is also "not good".
Let's take a look in more detail at what these other indicators might be.
The first "not so good" category could generally be considered "missing data". As mentioned
above, the worst missing data indicator (qc full only) is the -, which means that the SV was

calculated using the supplied ephemeris to be above the elevation mask, but no observation
data was present for this SV. In other words, all data is missing.
Following the - "all data missing" indicator are the partial missing data indicators. For example,
if A/S is normally on, seeing ; or , indicates that there was at least one observation epoch in
that bin where L2 observables (i.e. L2 and P2) were missing. You are unlikely to see a y, as
this would require a Y-code receiver (capable of tracking P1 while A/S is on). (An exception to
this is when qc-ing data from an Ashtech receiver like the Z-XII. The C/A and P1 pseudorange
observables are reported for all SVs, regardless of whether A/S is on or off.) If A/S is normally
off, seeing : or . indicates that there was at least one observation epoch in that bin where the
L2 observables were missing. A ~ indicates that, for some reason, the receiver could not track
P1, even though A/S was off, so the receiver instead recorded the C/A observable.
If you are using a P-code (not a Y-code) receiver that reports C/A and P1 pseudoranges for
each SV at each epoch (like the Ashtech Z-XII), you may want to use the -Y option, which
informs teqc that this is data not from a Y-code receiver, and to treat the qc analysis as though
from a P-code receiver.

Special Treatment of Data from Codeless Receivers
You may have a data set that was collected with a "codeless" or "squaring" receiver. For these
receivers, the pseudoranges P1 and P2 are never recorded, and the default qc report will
show that all observations were incomplete, as none of them can have a P2 observation
(though C/A is acceptable in place of the missing P1). Also, the SV symbol tracks for the
examples above would then appear as:

A/S on: _____--,,,,,,,,,,,,,,,,,,+++++__

A/S off: _____--..................+++++__

 1 2 3 4 5 6

which (correctly) indicates a lack of L2 and P2, even though the observable P2 is not possible
(and thus never present) and L2 may be always present.
You can inform teqc that the data is to be interpreted as though it were collected by a codeless
receiver by including a -P option (and, of course, the default option in +P). In this case, the
absence of P-codes is ignored for statistics and the data indicators change collapse to just two
possibilities (from the original eight possibilities):

.
phase and/or code data for SV is L1, C/A; if qc full, satellite was above elevation mask
o
phase and/or code data for SV is L1, C/A, and L2; if qc full, satellite was above
elevation mask

Notice that the A/S state (on or off) is ignored, as this is irrelevant for processing squared data.
Then, when using the -P option, the above SV symbol tracks will appear as:

A/S on: _____--oooooooooooooooooo+++++__

A/S off: _____--oooooooooooooooooo+++++__

 1 2 3 4 5 6

i.e., there is no difference whether A/S is on or off. You will probably see an occasional . data
indicator:

A/S any: _____--ooo.ooooooo.oooooo+++++__

 1 2 3 4 5 6

indicating one or more observation epochs where the observable L2 is missing.
A listing of the entire ASCII plot symbol table modified for codeless receivers can be dumped
to stdout by executing:

teqc -P ++sym

Other Indicators
The next set of "not so good" indicators are for slips in the observables. A common type of slip
is an ionospheric delay (phase) slip indicated by a I symbol. These often occur when the SV is
at low elevation, both while rising and setting, so the example SV symbol tracks from above
might really appear as:

A/S on: _____--Iooooooooooooooooo++I+I__

A/S off: _____--I*****************++I+I__

 1 2 3 4 5 6

In this example, ionospheric delay slips are detected shortly after the receiver starts tracking
the SV and as the SV is close to setting.
The other common type of slip is for one or both of the multipath (code) observables, MP1 and
MP2. Again, these frequently occur at low elevations. There are three symbols: M for slip on
both MP1 and MP2, 1 for slip on MP1 only, and 2 for slip on MP2 only. Notice that the multipath
slip indicators take a lower priority in the symbol hierarchy, so if an ionospheric delay slip and
multipath slip occur at different observations epochs within the ASCII bin, only the I symbol will
be seen (assuming that the option configuration is +ion and +mp). If you use -ion to suppress
ionospheric delay slip detection, the above SV symbol tracks might now appear as:

A/S on: _____--Mooooooooooooooooo++2+M__

A/S off: _____--M*****************++2+M__

 1 2 3 4 5 6

Interestingly, the occurrence of ionospheric delay or multipath slips in the recorded
observations is not only a function of the antenna environment (meaning all the way back to
the transmitting SV), but is also a function of the specific receiver. Due to internal slip detection
and phase observables resets, data from some receivers show virtually no ionospheric delay
slips and nearly all multipath slips. Other receivers do not reset the phase observables, and
show a larger number of ionospheric delay slips than multipath slips.
The last type of slip is the "n-millisecond clock slip", where the value of n is usually 1, denoted
by the symbol C in the SV symbol track. This slip is reported if all SVs being tracked have slips
in MP1 and MP2 equivalent to the same number of integral milliseconds, to a tolerance
specified by the -msec_tol option. If you set the tolerance to 1e-17 (milliseconds), you
probably will never see any of these slips. However, the default tolerance is 1e-2 (milliseconds),
and with this value the qc mode of teqc seems pretty capable of detecting these slips if they
are present.
What does it mean if you see the C symbol in an SV symbol track? There are several causes,
some more harmless than others. If the C symbol is preceded by an observation gap (no data
collected for any SVs), there may be one or more millisecond clock resets missing from the

observation epoch time tags. Also, if you use teqc to splice two RINEX OBS files together and
clock resets occur in the first file, a C will occur at the first epoch of the second file (since the
teqc splice does not modify the observation times in the second file to account for the
accumulative clock resets in the first file). In other cases, however, if the observation epochs
are fairly continuous, and the C indicator is appearing two or more times in 24-hours of data,
there is a strong possibility that the receiver was not healthy.
This latter possibility (that the receiver was not healthy) prompted the inclusion of another slip
indicator, the "n-millisecond multipath slip". It was observed that some receivers get so
unhealthy that, even though n-millisecond clock slips should be occurring (i.e., given the
specific receiver, no millisecond clock resets are present, even though they were expected)
none were being found because the multipath slips for different SVs had different millisecond
equivalents. In short, the value for n was not a constant for all SVs being tracked. In this case,
the m symbol is used. There is some probability (roughly about 2 : inverse of millisecond
tolerance) that a random multipath slip will be recorded as an m instead of as a M or 1 or 2; so,
treat the occasional m as you would any multipath slip. However, if you start to see lots of m
symbols, especially if you have seen C symbols being reported in the data from the same
receiver, suspect that the receiver is ailing.
The next "not so good" category is presence of data gaps. There are really two types of gaps.
One is a complete observation gap for all SVs. This can be caused perhaps by the receiver
being turned off and later turned back on, by a loss of all data for a period of time either internal
to the receiver itself or due to a communication breakdown with the receiver. Currently, a
complete observation gap is not indicated in the SV symbol tracks, except (on occasion) if they
are present in a qc lite run.
The other type of gap is the SV data gap, where the receiver stops tracking an SV for a period
of time even though it is well above the horizon or elevation mask, perhaps due to an
obstruction. The exact definition of an SV data gap depends on whether teqc is running in a qc
full or qc lite mode. For qc full, an SV data gap occurs if there are one or more missing
observation epochs while the SV is above the elevation mask. For qc lite, an SV data gap
occurs if tracking stops for more than the specified minimum time (-gap_mn, again) and then
tracking resumes before a specified maximum time (see -gap_mx option). The symbol used in
the SV symbol track is now -, so an SV data gap might look like:

A/S on: _____--Ioooooooooo--ooooo++I+I__

A/S off: _____--I**********--*****++I+I__

 1 2 3 ab 4 5 6

which occurred at the interval (ab). The meaning is really the same as the interval (23), i.e. the
SV was above the elevation mask, but no data was received.
The only other indicator for SV data, low in the symbol hierarchy, is the "Loss of Lock" indicator,
L, which is used when the receiver issues a loss of lock for either the L1 or the L2 observable.
A large number of L symbols may indicate an unhealthy receiver or antenna. This should rarely,
if ever, be seen in the ASCII time plot.
Following the SV symbol tracks are one or four more, depending on whether you are using qc
lite or qc full, respectively. For qc lite, there is a symbol line labeled "Obs". This records the
maximum number of SVs that were tracked by the receiver for each bin using a hexidecimal
representation. For example, if there is a 7 on this line, then 7 SVs were tracked for at least

one observation epoch represented by that time bin; if there is a b on this line, then 11 SVs
were tracked for a least one observation epoch represented by that time bin; and so on. If no
SVs were tracked, a (blank), rather than 0, is shown. If one or more s are present on the "Obs"
line in a qc lite run, this is your best indicator that a complete observation gap has occurred.
For qc full runs, the "Obs" line is replaced by four lines, labeled "-dn", "+dn", "+XX", and "Pos".
The "+XX" line is the one most like the qc lite "Obs" line; the XX is replaced by the elevation
mask in degrees (rounded to the nearest degree) and indicates the maximum expected
number of SVs that are above the elevation mask, according to the supplied ephemerides,
again using a hexidecimal notation. The difference between the qc lite "Obs" line and the qc
full "+XX" line is the difference between reality and theory: "Obs" shows what was seen, where
"+XX" shows what could have been seen (above the elevation mask).
The discrepancy between reality and theory is recorded in the "-dn" and "+dn" lines, which are
the SV tracking discrepancy counts, and record the two bounds of the discrepancy. They can
be thought of as the "good new/bad news" to the number of SVs not tracked. The line "-dn"
records the minimum discrepancy of all observation epochs for that time bin while the line
"+dn" records the maximum discrepancy of all observation epochs for that time bin. The
discrepancy count is also shown in hexidecimal notation, with (blank) for 0.
For the discrepancy lines to work correctly, the option -max_SVs must be set correctly. This
states the maximum number of SVs that are capable of being tracked by the receiver, and
currently has a default value of 12. If a complete observation gap occurs with qc full, a group of
c characters will be shown (c is hex for 12), at least on the "+dn" line, and if the gap is large
enough, on the "-dn" line as well.
The "Pos" line records the success or non-success of calculated code positions for the
antenna at the different epochs. Generally, you should see an o recorded for each bin in which
a position calculation was successful.
The last symbol line in the ASCII time plot is labeled "Clk". In the original UNAVCO QC, this
line (labeled "CLK") represented all millisecond receiver clock resets present in the
observation epochs with a C symbol. This has been replaced with either a + or - symbol,
meaning either a positive or negative millisecond receiver clock reset was detected,
respectively. Another symbol which may be placed on this line is ^, which is lower in the clock
symbol hierarchy that either + or -, and indicates at least one missed observation epoch in that
time bin, though a correct value of the observation sampling interval must be set (see -O.int
option) for this to work correctly. This symbol was added to help reveal two things: 1) the
existence of "micro-gaps", i.e. missing data periods less than that set by the -gap_mn option,
and 2) to identify short gaps during which a millisecond clock reset may have occurred. For
example, if a portion of the "Clk" symbol track is:

Clk: + + + ̂ ^ + + + ^+ + + + +

 12 3

then you can suspect a missing (positive) millisecond receiver clock reset at time (1) due to the
regularity of the rest of the identified resets and the missing epoch indicator ^, and other
missing observation epochs at times (2) and (3). Other micro-gaps might exist in the data, but
their presence would be hidden by the + symbols.
Incidentally, another "micro-gap" indicator exists for qc full runs on the "+dn" line. Since this is
maximum discrepancy between the number of SVs that could have been observed and what

were actually observed. However, for missing observation epochs (no SVs observed), rather
than placing a count of just "SVs that could have been observed" based on the ephemerides,
teqc places a count of the maximum allowed by the receiver. So, for a receiver capable of
tracking 12 SVs (see -max_SVs option), you will also see a c (hex for 12) on this line when
missing a observation epoch.
Following the "Clk" line of the ASCII time plot is a scale bar with tick marks. The separation
between tick marks is indicated a few lines lower at "Time line window length". The tick marks
should occur at even values of the tick interval. For example, if the time window starts at
01:39:30.000 (1h 39m 30s) and the tick interval is 3 hours, the tick marks will be placed at
03:00:00, 06:00:00, 09:00:00, and so on, to the best resolution possible on the ASCII plot. The
tic interval is self-scaling, from 0.1 seconds to 7 days, depending on the length of the time
window.
At the end of the ASCII time plot, the beginning and end time and date follow at the ends of
scale bar. Seconds are only printed out if they are non-zero.
Following the ASCII time plot in the short report segment is a report summary. First is a listing
of the name of target files, and if qc-full, the RINEX NAV files used.
The bounds of the time window is then shown. If the times of the first and/or last observation
epochs do not match the bounds of the time window, these epoch times are shown as well.
If the configuration environment variable or any configuration files were used, these are listed
next.
If the observation interval is non-zero, this is given.
The total number of satellites (SVs) with any type of observations is then given. This is
followed by a list of missing SVs, up to the maximum set by default (probably 32), or using the
-PRNs option, for each satellite system that had any members. Finally, if doing qc-full, a list of
SVs that did not have ephemeris information is given.
The number of SVs which can be simultaneously tracked by the receiver is then given. This
currently has a default value of 12, or can be changed using the -max_SVs option.
If the observation interval is non-zero, the total number of possible observation epochs in the
time window is given. This is followed the number of epochs that actually had "complete
observations" from at least one SV.
The definition of a "complete observation" is important, so it will be defined in detail here. In
order for an observation from a GPS SV to be "complete", it must have :

1. P1 or C/A code data

2. P2 code data

3. L1 and L2 phase data

4. S/N for both L1 and L2 be at or above specified minima

5. if qc-full, an SV elevation at or above the elevation mask

Then the numbers of possible, complete, and deleted observations are given. If doing qc-full,
the both the number of possible observations above the horizon and above the elevation mask
are given first. Next, the number of complete observations is given; if qc-full, this is restricted to
those observations above the elevation mask. Next, the number of deleted observations is
given; if qc-full, this is also restricted to those observations above the elevation mask.
If the multipath option was set (which it is by default), the average multipath RMS is given. If a

moving average window was used (which is used by default), information about the length of
this window is given. If qc-full, the multipath RMS is only for observations above the elevation
mask.
The number of detected millisecond receiver clock resets is then given. This is followed by the
total drift of the receiver clock, an estimate of the average receiver clock drift, and, if the
number of clock resets is non-zero, the average time between resets in minutes.
The length of time required before an SV data gap is reported is given next. If qc-lite, a
maximum time is also given.
If the detection of n-millisecond clock slips is on (+cl option), the number of epochs with
n-msec clock slips is reported. This occurs when all SVs with multipath observables must have
multipath slips of the same size to within a specified tolerance (fraction of millisecond).
This is followed by the number of other n-millisecond multipath slips which do not qualify as
n-millisecond clock slips. Given a non-zero tolerance, there is a certain probability that a few
multipath slips fall within the tolerance. Therefore, a second value is given in parentheses and
this is the total number of multipath slips for the time window (no elevation mask cutoff). If the
tolerance is set to 1e-2 millisecond, ratios on the order of 2:100 are expected due to chance.
Significantly higher ratios are an indication of a sick receiver.
Next if doing the derivative of the ionospheric delay observable (+iod) or multipath (+mp),
counts of the number of IOD and/or multipath slips is given. If qc-full, this is further broken
down according to elevation mask. In order to qualify as a count here, both MP1 and MP2
must slip (though not necessarily by the same amount) at the same epoch for a particular SV.
Finally, a "SUM" line in printed, showing the start and end times of the window, the length of
the time window in hours, the observation interval in seconds, the number of possible
observations (if qc-full), the number of complete observations, the ratio of complete to possible
observations as a percent (if qc-full), the multipath RMS values for MP1 and MP2 (limited by
the elevation mask if qc-full), and lastly the "observations per slip".
The "observations per slip" needs a bit of explanation. First, "observations" means "complete
observations" as defined above, including the elevation mask if qc-full. Second, "slip" means
"either an IOD slip and/or both MP1 and MP2 slips occurred during the epoch having a
complete observation for this SV".
Some additional information for each SV can be included in the short report segment by using
the +ssv option. Similar to the main SUM line, shown for each SV with observations are: the
expected number of observations, the number of complete observations, the number of
deleted observations, ratio of complete to possible observations, multipath RMS values for
MP1 and MP2, and the observations per slip.

Long Report Segment:
The long report segment contains a further breakdown of information by SV and by elevation
(if qc-full). In the long report segment, individual SVs are often referenced. The leading
character indicated the satellite system:

G: NAVSTAR GPS system
R: GLONASS system
T: NNSS Transit system
S: geostationary signal payload

The first portion is a list of some of the processing parameters, followed by a time stamp of the

first and last observation epochs within the time window, and the observation interval.
Next is a breakdown of observations per SV. If doing qc-full and the SV had ephemeris data,
the values in the first four columns have meaning:

#+hor:
number of observations above the horizon for this SV
<ele>:
mean elevation of SV above the horizon for epochs with observations
#+mask:
number of observations above the elevation mask for this SV
<ele>:
mean elevation of SV above the elevation mask for epochs with observations

Next are the number of reported and complete observations. If doing qc-full and the SV had
ephemeris data, the values are for epochs only above the elevation mask; otherwise, the
values are for all epochs:

#reprt:
number of observations with any data reported for this SV
#compl:
number of "complete" observations reported for this SV (see definition in "Short Report
Segment")

Next are the number of L1, L2, P1, P2, and C/A observations. Again, if doing qc-full and the SV
had ephemeris data, the values are for epochs only above the elevation mask; otherwise, the
values are for all epochs:

L1:
number of L1 observations for this SV
L2:
number of L2 observations for this SV
P1:
number of P1 observations for this SV
P2:
number of P2 observations for this SV
CA:
number of C/A observations for this SV

If doing qc-full, any SV computed to be above the elevation mask but not having any data
reported is listed next.
If doing qc-full, any SV not having ephemeris data but having observation data of any kind is
identified with a "*".
Next, a summary tally is given. If doing qc-full and a site position was found, the total number of
observation below the elevation mask is given (i.e., number of observations excluded because of
low elevation). Next, reasons for incomplete observations (above the elevation mask if a site
position was found) are summarized: missing L1, L2, P1 or C/A, or P2, or poor S/N for L1 or L2.
Following this is the number of observations reported with any code or phase data. (Note: If an SV
has only, say, Doppler data, it will not be reported here.) This is followed by the number of
observation deleted for any reason: below elevation mask (if qc-full), missing code or phase data,
and/or poor S/N. Finally, the number of complete observation is given.

Next, repeat of the receiver clock offset and drift statistics is given.
Next there is one of several elevation histograms, from the horizon angle (default of 0°) to the
zenith (90°). These need some explanation as to the style of presentation. The x- or horizontal
labeling of the histograms may use something like:
 5=% 1|m 15=% 2|m

In these cases, the histogram is really then a dual histogram, using the "=" symbol to show
percentages and the "|" symbol to show meters, and a "#" symbol to show where both histograms
occur. Hence, histogram lines like:
##############||||||||

##======

would show about 7% and 1.1 meters on the first line and 4% and 0.1 meters on the second
line. A ">" at the extreme right of the histogram bar indicates that the bar extends off scale to
the right. The y- or vertical labeling of the bins is in degrees from the horizon to the zenith.
The first histogram in for the ionospheric delay. Currently then is not a measure of the ion RMS
in the qc (hence all the values are zero), so the only valid scale is the percentage of
observations that had ionospheric delay slips.
Beneath this is the MP1 RMS summary per SV and the gross statistics for all SVs, followed by
the MP1 RMS histogram. The summary per SV shows the number of observations above the
mask angle (default of 10°) and how many were deleted for MP1 observations (due to lack of
one or more observables), followed by the mean elevation (in degrees), and the MP1 rms in
meters. There is also a breakdown of MP1 slips above and below 25° of elevation, and what
the receiver reported for slips in L1 and L2. The individual SV MP1 statistics are followed for
the gross statistics for all SVs. The elevation statistics and histogram shows the total number
of observations per elevation bin, the number of MP1 slips detected, and the mean MP1 rms
numerically, followed by the histogram bars for MP1 rms in meters (as "|" symbol) and the
percentage of observations that had MP1 slips (as "=" symbol). (Recall that if "|" and "="
overlap the "#" symbol is used.)
The MP2 summary follows and is analogous to the MP1 summary.
The final two histograms are for the L1 and L2 SNR values. These are also dual histograms,
showing the mean SNR with the "|" symbol and the one-sigma value with the "=" symbol.
(Recall that if "|" and "=" overlap the "#" symbol is used.) In these histograms, both scales use
the same units, which are arbitrary. If a raw binary file was used as input for the qc, or a RINEX
OBS file with observables S1 and/or S2, then the units are receiver specific. If a RINEX OBS
file without S1 or S2 is used, then the scaled RINEX 0-9 flag for SNR is shown.

"Strange" Behavior
Section 22.

• If doing qc full mode (i.e., NAV file(s) supplied either implicitly or explicitly or using binary target files)

the qc full>>>>>>>... indicator may, on some file data sets, pause part way through and then appear

to keep going. Don't panic. Everything is operating normally. Here's what is happening:

The qc full mode really starts off in a qc lite mode. When using target files (as opposed to stdin), teqc

has the luxury of being able to go to any arbitrary location in a file. The first primary goal of the a qc

full run is to find the pseudorange point position of the antenna. A certain minimal amount of

information is required before this is possible. There must be a certain number of SVs reporting

pseudorange data for a given epoch and teqc must have ephemeris information for those SVs.

Occasionally, this does not happen early in the file. When it does happen, teqc starts re-reading and

re-processing the target file now knowing the antenna position. If plot files have been requested, this

is when they are written. The pause you are seeing is the time it takes teqc to go back and re-do all

these items and get back up to the epoch when the point position was determined.

• If doing qc full mode (i.e., NAV file(s) supplied either implicitly or explicitly or using binary target files)

and the plot option is turned on, but no position was found (for whatever reason), no plot files are

created. This is a consequence of the logic used for the qc full mode (see above item).

• Direct qc of binary files produces a slightly different result than qc of RINEX files. This is due to the

direct qc of binaries being designed for direct data streams from receivers, and thus lacking the

capability of treating the data stream as a file. Also for direct qc, the plot file information regarding the

elevation and azimuth of each SV will begin at the first epoch where both the antenna position and an

SV ephemeris are both known, whereas for qc of RINEX files, the elevation and azimuth information

will be computed for the entire window of interest. This behavior can usually be correctly by

pre-loading a RINEX NAV file, say, from the same site and the previous day, using the -nav option.

• If doing any qc mode, the user intends to input NAV file(s), but uses +nav filename instead of -nav
filename, the original file filename may be re-opened and destroyed. One safeguard has been

implemented to help prevent this when the qc command is ordered:

teqc [options] +qc [options] +nav filename [rest_of_command]

in other words, turning on the qc option before specifying the RINEX NAV filename, and the command

does not involve a translation from binary. In this case, the program will not allow the filename to be

re-opened in a "write" mode, which if it took place would destroy the original file.

• When using the Borland DOS shell version of teqc, ASCII lines written to files by teqc terminate with

a newline ('\n' = CTRL J = 0x0a). ASCII lines spewed to stdout and then redirected to a file will be

terminated with a carriage return ('\r' = CTRL M = 0x0d) and then the newline. This added carriage

return is apparently being done by the DOS shell.

The WatCom DOS shell version of teqc results in the extra carriage returns being added in both

cases, both as files written by teqc and stdout redirected to a file.

As usual, if you ftp the DOS-created files to UNIX in ASCII mode, the added carriage returns are

removed; if you ftp the same files to UNIX in binary mode, the added carriage returns are left in the

files.

