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Preface

This preface introduces the ARM® DS-5™ Using the Debugger.
 

It contains the following:

• About this book on page 13.
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About this book
This book describes how to use the debugger to debug Linux applications, bare-metal, Real-Time
Operating System (RTOS), Linux, and Android platforms.

Using this book

This book is organized into the following chapters:

Chapter 1 Getting started with DS-5™ Debugger

Gives an introduction to some of the debugger concepts and explains how to launch the debugger.

Chapter 2 Configuring and connecting to a target

Describes how to configure and connect to a debug target using ARM DS-5 Debugger in the
Eclipse Integrated Development Environment (IDE).

Chapter 3 Working with the target configuration editor

Describes how to use the editor when developing a project for an ARM target.

Chapter 4 Controlling execution

Describes how to stop the target execution when certain events occur, and when certain conditions
are met.

Chapter 5 Examining the target

Describes how to examining registers, variables, memory, and the call stack.

Chapter 6 Debugging embedded systems

Gives an introduction to debugging embedded systems.

Chapter 7 Controlling runtime messages

Describes semihosting and how to control runtime messages.

Chapter 8 Debugging with scripts

Describes how to use scripts containing debugger commands to enable you to automate debugging
operations.

Chapter 9 Working with the Snapshot Viewer

Describes how to use the Snapshot Viewer.

Chapter 10 DS-5 Debug perspectives and views

Describes the DS-5 Debug perspective and related views in the Eclipse Integrated Development
Environment (IDE).

Chapter 11 Troubleshooting

Describes how to diagnose problems when debugging applications using DS-5 Debugger.

Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for
those terms. The ARM Glossary does not contain terms that are industry standard unless the ARM
meaning differs from the generally accepted meaning.

 Preface
 About this book
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See the ARM Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for
terms in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program
names, and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined
text instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific
value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code
fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined
in the ARM glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC,
UNKNOWN, and UNPREDICTABLE.

Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and

diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title.
• The number ARM DUI0446P.
• The page number(s) to which your comments refer.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Other information

• ARM Information Center.
• ARM Technical Support Knowledge Articles.
• Support and Maintenance.

 Preface
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Chapter 1
Getting started with DS-5™ Debugger

Gives an introduction to some of the debugger concepts and explains how to launch the debugger.
It contains the following:

• 1.1 About the debugger on page 1-17.
• 1.2 Debugger concepts on page 1-18.
• 1.3 Launching the debugger from Eclipse on page 1-20.
• 1.4 Launching the debugger from the command-line console on page 1-21.
• 1.5 DS-5 Debug perspective keyboard shortcuts on page 1-24.
• 1.6 DS-5 Debugger command-line console keyboard shortcuts on page 1-25.
• 1.7 Standards compliance in the DS-5 Debugger on page 1-26.
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1.1 About the debugger
DS-5™ Debugger provides a powerful tool for debugging applications on both hardware targets
and models using ARM® architecture-based processors.

Using DS-5 Debugger, you can have complete control over the flow of the execution so that you
can quickly isolate and correct errors.

The following features are provided:

• Loading images and symbols.
• Running images.
• Breakpoints and watchpoints.
• Source and instruction level stepping.
• Accessing variables and register values.
• Navigating the call stack.
• Support for handling exceptions and Linux signals.

• Debugging multi-threaded Linux applications.
• Debugging Linux kernel modules, boot code, and kernel porting.
• Debugging bare-metal Symmetric MultiProcessing (SMP) systems.

The debugger supports a comprehensive set of DS-5 Debugger commands that can be executed in
the Eclipse Integrated Development Environment (IDE), script files, or a command-line console.
In addition, there is a small subset of CMM-style commands sufficient for running target
initialization scripts. CMM is a scripting language supported by some third-party debuggers. To
execute CMM-style commands, you must create a debugger script file containing the CMM-style
commands and then use the DS-5 Debugger source command to run the script.

To help you get started, there are some tutorials that you can follow showing you how to run and
debug applications using DS-5 tools.

Related references
2.1 Types of target connections on page 2-28.
1.2 Debugger concepts on page 1-18.

Related information
ARM DS-5 tutorials.
DS-5 Debugger commands.
CMM-style commands supported by the debugger.
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1.2 Debugger concepts
Lists the main concepts involved when debugging applications.

Debugger
A debugger is software running on a host computer that enables you to make use of a
debug adapter to examine and control the execution of software running on a debug
target.

Debug session
A debug session begins when you connect the debugger to a target or a model for
debugging software running on the target and ends when you disconnect the host
software from the target.

Debug target
At an early stage of product development there might be no hardware so the expected
behavior of the hardware is simulated by software. This is referred to in the debugger
documentation as a model. Even though you might run a model on the same computer as
the debugger, it is useful to think of the target as a separate piece of hardware.

Alternatively, you can build a prototype product on a printed circuit board, including one
or more processors on which you run and debug the application. This is referred to in the
debugger documentation as a hardware target.

Debug adapter
A debug adapter performs the actions requested by the debugger on the target.

For example:

• Setting breakpoints.
• Reading from memory.
• Writing to memory.

The debug adapter is not the application being debugged, nor the debugger itself.

Examples include:

• Debug hardware adapter:

— ARM DSTREAM™ unit.
— ARM RVI™ unit.
— ARM VSTREAM™ unit.

• Debug software adapter:

— gdbserver.

Contexts
Each processor in the target can have a process currently in execution. Each process uses
values stored in variables, registers, and other memory locations. These values can
change during the execution of the process.

The context of a process describes its current state, as defined principally by the call stack
that lists all the currently active calls.

The context changes when:

• A function is called.
• A function returns.
• An interrupt or an exception occurs.

Because variables can have class, local, or global scope, the context determines which
variables are currently accessible. Every process has its own context. When execution of
a process stops, you can examine and change values in its current context.
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Scope
The scope of a variable is determined by the point within an application at which it is
defined.

Variables can have values that are relevant within:

• A specific class only (class).
• A specific function only (local).
• A specific file only (static global).
• The entire application (global).

Related tasks
2.5.1 Connecting to an existing application and application rewind session on page 2-35.
2.5.2 Downloading your application and application rewind server on the target system on page
2-37.
2.5.3 Starting the application rewind server and debugging the target-resident application on
page 2-38.
2.2 Configuring a connection to a Fixed Virtual Platform (FVP) on page 2-29.
2.3 Configuring a connection to a Linux target using gdbserver on page 2-31.
2.4 Configuring a connection to a Linux Kernel on page 2-33.
2.7 Configuring a connection to a bare-metal target on page 2-43.
2.8 Configuring an Event Viewer connection to a bare-metal target on page 2-45.

Related information
Setting up the ARM DSTREAM Hardware.
Setting up the ARM RVI Hardware.
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1.3 Launching the debugger from Eclipse
Describes how to launch Eclipse and select the DS-5 Debug perspective.

Procedure 

1. Launch Eclipse:

• On Windows, select Start > All Programs > ARM DS-5 > Eclipse for DS-5.
• On Linux:

— If you installed the shortcut during installation, you can select Eclipse for DS-5 in the
Applications menu.

— If you did not install the shortcut during installation:

1. Add the install_directory/bin directory to your PATH environment variable.
If it is already configured then you can skip this step.

2. Open Unix bash shell.
3. Enter eclipse at the prompt.

2. Select Window > Open Perspective > DS-5 Debug from the main menu.
3. To connect to the target:

• If you have not run a debug session before then you must configure a connection between
the debugger and the target before you can start any debugging tasks.

• If you have run a debug session before then you can select a target connection in the
Debug Control view and click on the Connect to Target toolbar icon.

Related tasks
1.4 Launching the debugger from the command-line console on page 1-21.
2.5.1 Connecting to an existing application and application rewind session on page 2-35.
2.5.2 Downloading your application and application rewind server on the target system on page
2-37.
2.5.3 Starting the application rewind server and debugging the target-resident application on
page 2-38.
2.2 Configuring a connection to a Fixed Virtual Platform (FVP) on page 2-29.
2.3 Configuring a connection to a Linux target using gdbserver on page 2-31.
2.4 Configuring a connection to a Linux Kernel on page 2-33.
2.7 Configuring a connection to a bare-metal target on page 2-43.
2.8 Configuring an Event Viewer connection to a bare-metal target on page 2-45.

Related references
2.1 Types of target connections on page 2-28.
10.35 Debug Configurations - Connection tab on page 10-269.
10.36 Debug Configurations - Files tab on page 10-272.
10.37 Debug Configurations - Debugger tab on page 10-276.
10.39 Debug Configurations - Arguments tab on page 10-280.
10.40 Debug Configurations - Environment tab on page 10-282.
10 DS-5 Debug perspectives and views on page 10-189.
10.7 Debug Control view on page 10-207.
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1.4 Launching the debugger from the command-line console
Describes how to launch the debugger from a command-line console or a Unix bash shell with the
required environment variables.

Procedure 

1. Launch a command-line console:

• On Windows, select Start > All Programs > ARM DS-5 > DS-5 Command Prompt.
• On Linux:

1. Add the install_directory/bin directory to your PATH environment variable. If it
is already configured then you can skip this step.

2. Open a Unix bash shell.
2. Launch the debugger using the following command-line syntax:

debugger --target [--target_device] [option]...

Where:

--target=host:port | filename
Specifies either the host:port for the connection between the debugger and
gdbserver or a target configuration file such as an XML or RVC file.

A serial connection requires an XML file similar to the following example,
mySerialConfig.xml:

<?xml version="1.0"?>
<RVConfigUtility>
    <rddi type="rddi-debug-gdb"/>
    <rddigdb>
        <connection>
            <serial>
                <port>COM1</port>
                <speed>115200</speed>
            </serial>
        </connection>
    </rddigdb>
 </RVConfigUtility>

--target_device=number | name
Specifies the device number or name. You must launch the debugger with --
target_device command-line option when configuring a connection to a target
containing multiple devices. If you do not specify --target_device then the
debugger lists all the available devices and quits.

and option can be any of the following:

--continue_on_error=true | false
Specifies whether the debugger stops the target and exits the current script when an
error occurs. The default is --continue_on_error=false.

--disable_semihosting
Disables semihosting operations.

--disable_semihosting_console
Disables all semihosting operations to the debugger console.

--enable_semihosting
Enables semihosting operations.

--help
Displays a summary of the main command-line options.
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--image=filename
Specifies the image file for the debugger to load when it connects to the target.

--interactive
Specifies interactive mode that redirects standard input and output to the debugger
from the current command-line console, for example, Windows Command Prompt or
Unix bash shell. This is the default if no script file is specified.

--log_config=option
Specifies the type of logging configuration to output runtime messages from the
debugger.

Where:

option
Specifies a predefined logging configuration or a user-defined logging
configuration file:

info
Output messages using the predefined INFO level configuration.
This level does not output debug messages. This is the default.

debug
Output messages using the predefined DEBUG level configuration.
This option outputs both INFO level and DEBUG level messages.

filename
Specifies a user-defined logging configuration file to customize the
output of messages. The debugger supports log4j configuration files.

--log_file=filename
Specifies an output file to receive runtime messages from the debugger. If this option
is not used then output messages are redirected to the console.

--script=filename
Specifies a script file containing debugger commands to control and debug your
target. You can repeat this option if you have several script files. The scripts are run in
the order specified and the debugger quits after the last script finishes. Add the --
interactive option to the command-line if you want the debugger to remain in
interactive mode after the last script finishes.

--semihosting_error=filename
Specifies a file to write stderr for semihosting operations.

--semihosting_input=filename
Specifies a file to read stdin for semihosting operations.

--semihosting_output=filename
Specifies a file to write stdout for semihosting operations.

--stop_on_connect=true | false
Specifies whether the debugger stops the target when it connects to the target device.
To leave the target unmodified on connection you must specify false. The default is
--stop_on_connect=true.

--target_os=name
Specifies the name of the target Operating System (OS), for example, --
target_os=linux. This enables OS support within the debugger for example,
shared library support. Available options are:

linux
OS support for debug of Linux applications.

linux-kernel
OS support for debug of a Linux kernel.

--top_mem=address
Specifies the stack base, also known as the top of memory. Top of memory is only
used for semihosting operations.
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Examples 

debugger --target=beagleboard.rvc --target_device=Cortex-A8
debugger --target=My_FVP.xml --target_device=Cortex-A8 --image=gnometris

When connected, use the DS-5 debugger commands to access the target and start debugging. For
example, info registers displays all application level registers.

Related concepts
7.6 About Log4j configuration files on page 7-162.

Related tasks
1.3 Launching the debugger from Eclipse on page 1-20.

Related references
1.6 DS-5 Debugger command-line console keyboard shortcuts on page 1-25.
8.1 Exporting DS-5 Debugger commands generated during a debug session on page 8-167.
7.1 About semihosting and top of memory on page 7-157.

Related information
Log4j in Apache Logging Services.
DS-5 Debugger commands.
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1.5 DS-5 Debug perspective keyboard shortcuts
Lists the keyboard shortcuts that you can use in the DS-5 Debug perspective.

In any view or dialog box you can access the dynamic help by using the following:

• On Windows, F1 key
• On Linux for example, Shift+F1 key combination.

The following keyboard shortcuts are available when you connect to a target:

Commands view
You can use:

Ctrl+Space
Access the content assist for autocompletion of commands.

Enter
Execute the command that is entered in the adjacent field.

DOWN arrow
Navigate down through the command history.

UP arrow
Navigate up through the command history.

Debug Control view
You can use:

F5
Step at source or instruction level including stepping into all function calls where
there is debug information. You can also use ALT+F5 to step in the opposite
mode. For example, if you are in source level stepping mode then using ALT
+F5 performs an instruction level step.

F6
Step at source or instruction level but stepping over all function calls.

F7
Continue running to the next instruction after the selected stack frame finishes.

F8
Continue running the target.

 Note 

A Connect only connection might require setting the PC register to the start of
the image before running it.

F9
Interrupt the target and stop the current application if it is running.

Related tasks
1.3 Launching the debugger from Eclipse on page 1-20.

Related references
10.6 Commands view on page 10-204.
10.7 Debug Control view on page 10-207.
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1.6 DS-5 Debugger command-line console keyboard shortcuts
Lists the line editing features provided, including a command history and some common keyboard
shortcuts

Each command you enter is stored in the command history. Use the UP and DOWN arrow keys to
navigate through the command history, to find and reissue a previous command.

To make editing commands and navigating the command history easier, the following special
keyboard shortcuts are available:

Ctrl+A
Move the cursor to the start of the line.

Ctrl+D
Quit the debugger console.

Ctrl+E
Move the cursor to the end of the line.

Ctrl+N
Search forward through the command history for the currently entered text.

Ctrl+P
Search back through the command history for the currently entered text.

Ctrl+W
Delete the last word.

DOWN arrow
Navigate down through the command history.

UP arrow
Navigate up through the command history.

Related tasks
1.4 Launching the debugger from the command-line console on page 1-21.
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1.7 Standards compliance in the DS-5 Debugger
Lists the level of compliance that DS-5 Debugger conforms to.

ELF
The debugger can read executable images in ELF format.

DWARF
The debugger can read debug information from ELF images in the DWARF 2, DWARF
3, and DWARF 4 formats.

Trace Protocols
The debugger can interpret trace that complies with the ETMv3.4, ETMv3.5, ETMv4,
ITM and STM protocols.

 Note 

The DWARF 2 and DWARF 3 standard is ambiguous in some areas such as debug frame data.
This means that there is no guarantee that the debugger can consume the DWARF produced by all
third-party tools.

Related information
ELF for the ARM Architecture.
DWARF for the ARM Architecture.
The DWARF Debugging Standard.
International Organization for Standardization.
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Chapter 2
Configuring and connecting to a target

Describes how to configure and connect to a debug target using ARM DS-5 Debugger in the
Eclipse Integrated Development Environment (IDE).
It contains the following:

• 2.1 Types of target connections on page 2-28.
• 2.2 Configuring a connection to a Fixed Virtual Platform (FVP) on page 2-29.
• 2.3 Configuring a connection to a Linux target using gdbserver on page 2-31.
• 2.4 Configuring a connection to a Linux Kernel on page 2-33.
• 2.5 About configuring connections to a Linux target using Application Debug with Rewind

Support on page 2-35.
• 2.6 About configuring connections to an Android target using Native Application/Library

Debug with Rewind Support on page 2-40.
• 2.7 Configuring a connection to a bare-metal target on page 2-43.
• 2.8 Configuring an Event Viewer connection to a bare-metal target on page 2-45.
• 2.9 About the target configuration import utility on page 2-47.
• 2.10 Adding a new platform on page 2-49.
• 2.11 Adding a new configuration database to DS-5 on page 2-51.
• 2.12 Exporting an existing launch configuration on page 2-53.
• 2.13 Importing an existing launch configuration on page 2-56.
• 2.14 Disconnecting from a target on page 2-58.
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2.1 Types of target connections
To debug an application using DS-5, you must set up a connection between the host workstation
running the debugger and the target.

There are several types of connections supported by the debugger:

Linux applications
To debug a Linux application you can use a TCP or serial connection to:

• gdbserver running on a model that is pre-configured to boot ARM Embedded
Linux.

• gdbserver running on a hardware target.
• Application rewind server running on a hardware target.

This type of development requires gdbserver or the application rewind server to be
installed and running on the target.

 Note 

• If gdbserver is not installed on the target, either see the documentation for your
Linux distribution or check with your provider. Alternatively, you might be able to
use the gdbserver from the DS-5 installation at install_directory/arm.

• The application rewind server file undodb-server can be found in the
install_directory\DS-5\arm\undodb\linux folder.

Bare-metal and Linux kernel
To debug an application running on a bare-metal target, a Linux kernel, or a kernel device
driver, you can use a debug hardware adapter connected to the host workstation and the
target.

Snapshot Viewer
The Snapshot Viewer enables you to debug a read-only representation of your application
using previously captured state.

 Note 

Currently DS-5 only supports DS-5 Debugger connections to the Snapshot Viewer using
the command-line console.

Related concepts
9.1 About the Snapshot Viewer on page 9-182.
6.14 About application rewind on page 6-154.

Related tasks
2.5.1 Connecting to an existing application and application rewind session on page 2-35.
2.5.2 Downloading your application and application rewind server on the target system on page
2-37.
2.5.3 Starting the application rewind server and debugging the target-resident application on
page 2-38.
2.6.1 Attaching to a running Android application on page 2-40.
2.6.2 Downloading and debugging an Android application on page 2-41.
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2.2 Configuring a connection to a Fixed Virtual Platform (FVP)
Describes how to configure a connection to a FVP and set up a Virtual File System (VFS).

DS-5 supports serial connections between a FVP and the host machine on both Windows and
Linux platforms.

Procedure 

1. Select Window > Open Perspective > DS-5 Debug from the main menu.
2. Select Debug Configurations... from the Run menu.
3. Select DS-5 Debugger from the configuration tree and then click on New to create a new

configuration.
4. In the Name field, enter a suitable name for the new configuration.
5. Click on the Connection tab to configure a DS-5 Debugger target connection:

a) Select the required FVP platform, Linux Application Debug project type and the required
debug operation. For example, if you are using a VFS then select Debug target resident
application.

b) In the Connections panel, a serial connection is automatically configured.
c) If you are using VFS, select Enable virtual file system support. The default VFS

mounting point maps the Eclipse workspace root directory to the /writeable directory
on the model. Leave the default or change as required.

 Note 

VFS is only set-up on initialization of the model. Changes to the VFS directory structure
might require restarting the model.

6. Click on the Files tab to define the target environment and select debug versions of the
application file and libraries on the host that you want the debugger to use.
a) In the Target Configuration panel, specify the location of the application on the target. You

can also specify the target working directory if required.
b) In the Files panel, select the files on the host that you want the debugger to use to load the

debug information.

 Note 

Options in the Files tab are dependent on the type of debug operation that you select.

7. Click on the Debugger tab to configure the debugger settings.
a) Specify the actions that you want the debugger to do after connection to the target.
b) Configure the host working directory or use the default.
c) Configure the search paths on the host used by the debugger when it displays source code.

8. If required, click on the Arguments tab to enter arguments that are passed to the application
when the debug session starts.

9. If required, click on the Environment tab to create and configure the target environment
variables that are passed to the application when the debug session starts.

10. Click on Apply to save the configuration settings.
11. Click on Debug if you want to connect to the target and begin debugging immediately.

Alternatively, click on Close to close the Debug Configurations dialog box. Use the Debug
Control view to connect to the target associated with this debug configuration.

12. Debugging requires the DS-5 Debug perspective. If the Confirm Perspective Switch dialog
box opens, click on Yes to switch perspective.
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When connected and the DS-5 Debug perspective opens you are presented with all the relevant
views and editors.

For more information on these options, use the dynamic help.

Related tasks
2.12 Exporting an existing launch configuration on page 2-53.
2.13 Importing an existing launch configuration on page 2-56.
2.3 Configuring a connection to a Linux target using gdbserver on page 2-31.
2.4 Configuring a connection to a Linux Kernel on page 2-33.
2.7 Configuring a connection to a bare-metal target on page 2-43.
2.8 Configuring an Event Viewer connection to a bare-metal target on page 2-45.

Related references
10.35 Debug Configurations - Connection tab on page 10-269.
10.36 Debug Configurations - Files tab on page 10-272.
10.37 Debug Configurations - Debugger tab on page 10-276.
10.38 Debug Configurations - OS Awareness tab on page 10-279.
10.39 Debug Configurations - Arguments tab on page 10-280.
10.40 Debug Configurations - Environment tab on page 10-282.

Related information
Model Shell options for Fast Models.
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2.3 Configuring a connection to a Linux target using gdbserver
Describes how to connect to a Linux target using gdbserver.

Prerequisites 

Before connecting you must:

1. Set up the target with an Operating System (OS) installed and booted. See the documentation
supplied with the target for more information.

2. Obtain the target IP address or name.
3. If required, set up a Remote Systems Explorer (RSE) connection to the target.

If you are connecting to an already running gdbserver you must ensure that you have:

1. gdbserver installed and running on the target.

To run gdbserver and the application on the target you can use:

gdbserver port path/myApplication

Where:

• port is the connection port between gdbserver and the application.
• path/myApplication is the application that you want to debug.

2. An application image loaded and running on the target.

Procedure 

1. Select Window > Open Perspective > DS-5 Debug from the main menu.
2. Select Debug Configurations... from the Run menu.
3. Select DS-5 Debugger from the configuration tree and then click on New to create a new

configuration.
4. In the Name field, enter a suitable name for the new configuration.
5. Click on the Connection tab to configure a DS-5 Debugger target connection:

a) Select the required platform, Linux Application Debug project type and the required
debug operation.

b) Configure the connection between the debugger and gdbserver.
6. Click on the Files tab to define the target environment and select debug versions of the

application file and libraries on the host that you want the debugger to use.
a) In the Target Configuration panel, select the application on the host that you want to

download to the target and specify the location on the target where you want to download
the selected file.

b) In the Files panel, select the files on the host that you want the debugger to use to load the
debug information. If required, you can also specify other files on the host that you want to
download to the target.

 Note 

Options in the Files tab are dependent on the type of debug operation that you select.

7. Click on the Debugger tab to configure the debugger settings.
a) In the Run control panel, specify the actions that you want the debugger to do after

connection to the target.
b) Configure the host working directory or use the default.
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c) In the Paths panel, specify any source or library search directories on the host that the
debugger uses when it displays source code.

8. If required, click on the Arguments tab to enter arguments that are passed to the application
when the debug session starts.

9. If required, click on the Environment tab to create and configure the target environment
variables that are passed to the application when the debug session starts.

10. Click on Apply to save the configuration settings.
11. Click on Debug to connect to the target.
12. Debugging requires the DS-5 Debug perspective. If the Confirm Perspective Switch dialog

box opens, click Yes to switch perspective.

When connected and the DS-5 Debug perspective opens you are presented with all the relevant
views and editors.

For more information on these options, use the dynamic help.

Related tasks
2.12 Exporting an existing launch configuration on page 2-53.
2.13 Importing an existing launch configuration on page 2-56.
2.2 Configuring a connection to a Fixed Virtual Platform (FVP) on page 2-29.
2.4 Configuring a connection to a Linux Kernel on page 2-33.
2.7 Configuring a connection to a bare-metal target on page 2-43.
2.8 Configuring an Event Viewer connection to a bare-metal target on page 2-45.

Related references
10.35 Debug Configurations - Connection tab on page 10-269.
10.36 Debug Configurations - Files tab on page 10-272.
10.37 Debug Configurations - Debugger tab on page 10-276.
10.38 Debug Configurations - OS Awareness tab on page 10-279.
10.39 Debug Configurations - Arguments tab on page 10-280.
10.40 Debug Configurations - Environment tab on page 10-282.
10.46 Target management terminal for serial and SSH connections on page 10-291.
11.1 ARM Linux problems and solutions on page 11-300.
11.3 Target connection problems and solutions on page 11-302.
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2.4 Configuring a connection to a Linux Kernel
Describes how to configure a connection to a Linux target, load the Linux Kernel into secure
memory, and also how to add a pre-built loadable module to the target.

You can connect to running target using a debug hardware adapter.

 Note 

By default for this type of connection, all processor exceptions are handled by Linux on the target.
You can use the Manage Signals dialog box in the Breakpoints view menu to modify the default
handler settings.

Prerequisites 

Before connecting you must ensure that you have the target IP address or name for the connection
between the debugger and the debug hardware adapter.

Procedure 

1. Select Window > Open Perspective > DS-5 Debug from the main menu.
2. Select Debug Configurations... from the Run menu.
3. Select DS-5 Debugger from the configuration tree and then click on New to create a new

configuration.
4. In the Name field, enter a suitable name for the new configuration.
5. Click on the Connection tab to configure a DS-5 Debugger target connection:

a) Select the required platform, Linux Kernel and/or Devices Driver Debug project type
and the required debug operation.

b) Configure the connection between the debugger and the debug hardware adapter.
6. Click on the Debugger tab to configure the debugger settings.

a) In the Run control panel, select Connect only and set up initialization scripts as required.

 Note 

Operating System (OS) support is automatically enabled when a Linux kernel image is
loaded into the debugger from the DS-5 Debugger launch configuration. However, you can
manually control this by using the set os command.

For example, if you want to delay the activation of OS support until after the kernel has
booted and the Memory Management Unit (MMU) is initialized then you can configure a
connection that uses a target initialization script to disable OS support. To debug the
kernel, OS support must be enabled in the debugger.

b) Select the Execute debugger commands checkbox.
c) In the field provided, enter the following commands:

add-symbol-file <path>/vmlinux S:0
add-symbol-file <path>/modex.ko 

 Note 

The path to the vmlinux must be the same as your build environment.

d) Configure the host working directory or use the default.
e) In the Paths panel, specify any source search directories on the host that the debugger uses

when it displays source code.
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7. Click on Apply to save the configuration settings.
8. Click on Debug to connect to the target.
9. Debugging requires the DS-5 Debug perspective. If the Confirm Perspective Switch dialog

box opens, click Yes to switch perspective.

When connected and the DS-5 Debug perspective opens you are presented with all the relevant
views and editors.

For more information on these options, use the dynamic help.

Related concepts
6.9 About debugging a Linux kernel on page 6-146.
6.10 About debugging Linux kernel modules on page 6-148.

Related tasks
2.12 Exporting an existing launch configuration on page 2-53.
2.13 Importing an existing launch configuration on page 2-56.
2.2 Configuring a connection to a Fixed Virtual Platform (FVP) on page 2-29.
2.3 Configuring a connection to a Linux target using gdbserver on page 2-31.
2.7 Configuring a connection to a bare-metal target on page 2-43.
2.8 Configuring an Event Viewer connection to a bare-metal target on page 2-45.

Related references
10.35 Debug Configurations - Connection tab on page 10-269.
10.36 Debug Configurations - Files tab on page 10-272.
10.37 Debug Configurations - Debugger tab on page 10-276.
10.38 Debug Configurations - OS Awareness tab on page 10-279.
10.39 Debug Configurations - Arguments tab on page 10-280.
10.40 Debug Configurations - Environment tab on page 10-282.
10.46 Target management terminal for serial and SSH connections on page 10-291.
11.1 ARM Linux problems and solutions on page 11-300.
11.3 Target connection problems and solutions on page 11-302.

Related information
Debugging a loadable kernel module.
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2.5 About configuring connections to a Linux target using Application Debug
with Rewind Support

Use the options available under Application Debug with Rewind Support in the Debug
Configurations dialog to connect to Linux targets.

 Note 

• Application rewind does not follow forked processes.
• When debugging backwards, you can only view the contents of recorded memory, registers, or

variables. You cannot edit or change them.
• Application rewind supports architecture ARMv5TE targets and later, except for the 64-bit

ARMv8 architecture.

The options are:

• Connect to already running application.This option requires you to load your application and
the application rewind server on your target and start the application rewind server manually
before attempting a connection between DS-5 and your target.

• Start undodb-server and debug target-resident application.This option requires you to load
your application and the application rewind server on your target manually. When a
connection is established, DS-5 starts a new application rewind server session on your target to
debug your application.

• Download and debug application.When a connection is established using this option, DS-5
downloads your application and the application rewind server on to the target system, and
starts a new application rewind server session to debug your application.

 Note 

The application rewind feature in DS-5 Debugger is license managed. Contact your support
representative for details about this feature.

It contains the following:

• 2.5.1 Connecting to an existing application and application rewind session on page 2-35.
• 2.5.2 Downloading your application and application rewind server on the target system on

page 2-37.
• 2.5.3 Starting the application rewind server and debugging the target-resident application on

page 2-38.

2.5.1 Connecting to an existing application and application rewind session
Use the Connect to already running application option to set up a connection to an existing
application and application rewind server session on your target.

Prerequisites 

Before connecting to an existing application rewind server session, you must ensure that:

• The undodb-server file found in the install_directory\DS-5\arm\undodb\linux
folder is copied to your target.

• The application that you want to debug is copied to the target.
• The application rewind server session is running and connected to your application.

 Note 

To run the application rewind server and the application on the target, use:
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undodb-server --connect-port port path/myApplication

Where:

port is a TCP/IP port number of your choice that is used by application rewind server to
communicate with DS-5 Debugger.

path/myApplication is the application that you want to debug.

Procedure 

1. From the main menu, select Window > Open Perspective > Other > DS-5 Debug to switch
to the DS-5 debug perspective.

2. From the Run menu, select Debug Configurations....
3. Select DS-5 Debugger from the configuration tree and then click New launch configuration

to create a new configuration.
4. In the Name field, enter a suitable name for the new configuration.
5. Select the Connection tab to configure the target connection:

a) In the Select target panel, select Linux Application Debug > Application Debug with
Rewind Support > Connections via undodb-server > Connect to already running
application.

b) Enter the Address of the connection you want to connect to.
c) Enter the UndoDB-server (TCP) Port that you want to connect to.

6. Select the Files tab and in the Files panel, select the files on the host that you want the
debugger to use to load the debug information from. If required, you can also specify other
files on the host that you want to download to the target.

7. Select the Debugger tab to configure the debugger settings.
a) In the Run control panel, specify the actions that you want the debugger to perform after

connecting to the target.
b) In the Host working directory panel, configure the host working directory or use the

default.
c) In the Paths panel, specify any source or library search directories on the host that the

debugger uses when it displays source code.
8. Click Apply to save the configuration settings.
9. Click Debug to connect to the target.

When connected, and the DS-5 Debug perspective opens, you are presented with all the relevant
views and editors.

For more information on these options, use the dynamic help.

Related concepts
6.14 About application rewind on page 6-154.

Related references
10.35 Debug Configurations - Connection tab on page 10-269.
10.36 Debug Configurations - Files tab on page 10-272.
10.37 Debug Configurations - Debugger tab on page 10-276.
10.38 Debug Configurations - OS Awareness tab on page 10-279.
10.39 Debug Configurations - Arguments tab on page 10-280.
10.40 Debug Configurations - Environment tab on page 10-282.
2.1 Types of target connections on page 2-28.
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2.5.2 Downloading your application and application rewind server on the target system
Use the Download and debug application option to download your application and application
rewind server to the target system and start a new application rewind session.

Prerequisites 

Before connecting, you must:

• Set up the target with an Operating System (OS) installed and booted. See the documentation
supplied with the target for more information.

• Obtain the IP address or name of the target.
• Set up a Remote Systems Explorer (RSE) connection to the target.

Procedure 

1. From the main menu, select Window > Open Perspective > Other > DS-5 Debug to switch
to the DS-5 debug perspective.

2. From the Run menu, select Debug Configurations....
3. Select DS-5 Debugger from the configuration tree and then click New launch configuration

to create a new configuration.
4. In the Name field, enter a suitable name for the new configuration.
5. Select the Connection tab to configure the target connection:

a) In the Select target panel, select Linux Application Debug > Application Debug with
Rewind Support > Connections via undodb-server > Download and debug
application.

b) Select your RSE connection from the list.
c) Accept the default values for the UndoDB-server (TCP) Port.

6. Select the Files tab to define the application file and libraries.
a) In the Target Configuration panel, select the application on the host that you want to

download to the target and specify the location on the target where you want to download
the selected file.

b) In the Files panel, select the files on the host that you want the debugger to use to load the
debug information. If required, you can also specify other files on the host that you want to
download to the target.

 Note 

Options in the Files tab are dependent on the type of debug operation that you select.

7. Select the Debugger tab to configure the debugger settings.
a) In the Run control panel, specify the actions that you want the debugger to perform after

connecting to the target.
b) In the Host working directory panel, configure the host working directory or use the

default.
c) In the Paths panel, specify any source or library search directories on the host that the

debugger uses when it displays source code.
8. If required, use the Arguments tab to enter arguments that are passed to the application when

the debug session starts.
9. If required, use the Environment tab to create and configure the target environment variables

that are passed to the application when the debug session starts.
10. Click Apply to save the configuration settings.
11. Click Debug to connect to the target.
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When connected, and the DS-5 Debug perspective opens, you are presented with all the relevant
views and editors.

For more information on these options, use the dynamic help.

Related concepts
6.14 About application rewind on page 6-154.

Related references
10.35 Debug Configurations - Connection tab on page 10-269.
10.36 Debug Configurations - Files tab on page 10-272.
10.37 Debug Configurations - Debugger tab on page 10-276.
10.38 Debug Configurations - OS Awareness tab on page 10-279.
10.39 Debug Configurations - Arguments tab on page 10-280.
10.40 Debug Configurations - Environment tab on page 10-282.
2.1 Types of target connections on page 2-28.

2.5.3 Starting the application rewind server and debugging the target-resident application
Use the Start undodb-server and debug target-resident application option to start the
application rewind server on the target system and debug an existing application.

Prerequisites 

Before connecting, you must:

• Set up the target with an Operating System (OS) installed and booted. See the documentation
supplied with the target for more information.

• Obtain the IP address or name of the target.
• Set up a Remote Systems Explorer (RSE) connection to the target.
• Ensure that the application rewind server is available on your target and is added to your PATH

environment variable.
• Ensure that the application you want to debug is available on the target.

Procedure 

1. From the main menu, select Window > Open Perspective > Other > DS-5 Debug to switch
to the DS-5 debug perspective.

2. From the Run menu, select Debug Configurations....
3. Select DS-5 Debugger from the configuration tree and then click New launch configuration

to create a new configuration.
4. In the Name field, enter a suitable name for the new configuration.
5. Select the Connection tab to configure the target connection:

a) In the Select target panel, select Linux Application Debug > Application Debug with
Rewind Support > Connections via undodb-server > Start undodb-server and debug
target-resident application.

b) Select your RSE connection from the list.
c) Accept the default values for the UndoDB-server (TCP) Port.

6. Select the Files tab to define the location of the Application on target, Target working
directory, and additional Files.
a) In the Target Configuration panel, enter the location of the Application on target and the

Target working directory.
b) In the Files panel, enter or select the location of the files on the target that you want the

debugger to use to load additional debug information. If required, you can also specify
other files on the host that you want to download to the target.

2 Configuring and connecting to a target
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 Note 

Options in the Files tab are dependent on the type of debug operation that you select.

7. Select the Debugger tab to configure the debugger settings.
a) In the Run control panel, specify the actions that you want the debugger to perform after

connecting to the target.
b) In the Host working directory panel, configure the host working directory or use the

default.
c) In the Paths panel, specify any source or library search directories on the host that the

debugger uses when it displays source code.
8. If required, use the Arguments tab to enter arguments that are passed to the application when

the debug session starts.
9. If required, use the Environment tab to create and configure the target environment variables

that are passed to the application when the debug session starts.
10. Click Apply to save the configuration settings.
11. Click Debug to connect to the target.

Related concepts
6.14 About application rewind on page 6-154.

Related references
10.35 Debug Configurations - Connection tab on page 10-269.
10.36 Debug Configurations - Files tab on page 10-272.
10.37 Debug Configurations - Debugger tab on page 10-276.
10.38 Debug Configurations - OS Awareness tab on page 10-279.
10.39 Debug Configurations - Arguments tab on page 10-280.
10.40 Debug Configurations - Environment tab on page 10-282.
2.1 Types of target connections on page 2-28.

2 Configuring and connecting to a target
2.5 About configuring connections to a Linux target using Application Debug with Rewind Support

ARM DUI0446P Copyright © 2010-2013 ARM. All rights reserved. 2-39
Non-Confidential



2.6 About configuring connections to an Android target using Native
Application/Library Debug with Rewind Support

Use the options available under Native Application/Library Debug with Rewind Support in the
Debug Configurations dialog to connect to Android targets.

 Note 

• Application rewind does not follow forked processes.
• When debugging backwards, you can only view the contents of recorded memory, registers, or

variables. You cannot edit or change them.
• Application rewind supports architecture ARMv5TE targets and later, except for the 64-bit

ARMv8 architecture.

The options are:

• Attach to a running Android application.This option requires you to load your application on
your Android target manually before attempting to attach the DS-5 debug session. Once
attached, DS-5 starts a new application rewind server session to debug your application.

• Download and debug an Android application. When a connection is established using this
option, DS-5 downloads your application and the application rewind server on to the Android
target, and starts a new application rewind server session to debug your application.

It contains the following:

• 2.6.1 Attaching to a running Android application on page 2-40.
• 2.6.2 Downloading and debugging an Android application on page 2-41.

2.6.1 Attaching to a running Android application
Use the Attach to a running Android application option to set up a connection to an existing
application and application rewind server session on your target.

Prerequisites 

Before connecting, you must:

• Ensure that the ADB application bundle is available under the PATH environment variable on
your workstation.

• Obtain root access on the Android device.
• Ensure that the Android target is booted up and running.
• Ensure that your application is installed and running on the Android target.

Procedure 

1. From the main menu, select Window > Open Perspective > Other > DS-5 Debug to switch
to the DS-5 debug perspective.

2. From the Run menu, select Debug Configurations....
3. Select DS-5 Debugger from the configuration tree and then click New launch configuration

to create a new configuration.
4. In the Name field, enter a suitable name for the new configuration.
5. Select the Connection tab to configure the target connection:

a) In the Select target panel, select Android Application Debug > Native Application/
Library Debug with Rewind Support > APK Native Library Debug via undodb-
server > Attach to a running Android application.

b) Select your device from the Connections panel.

2 Configuring and connecting to a target
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c) Accept the default values for the UndoDB-server (TCP) Port.
6. Select the Files tab to define the application file and libraries.

a) In the Android panel, select the Project directory and APK file that you want to use. The
Process and Activity fields are populated by the AndroidManifest.xml file.

b) In the Files panel, select the files on the host that you want the debugger to use to load the
debug information.

 Note 

Options in the Files tab are dependent on the type of debug operation that you select.

7. Select the Debugger tab to configure the debugger settings.
a) In the Run control panel, select Connect only.
b) In the Host working directory panel, configure the host working directory or use the

default.
c) In the Paths panel, specify any source or library search directories on the host that the

debugger uses when it displays source code.
8. Click Apply to save the configuration settings.
9. Click Debug to connect to the target.

Related concepts
6.14 About application rewind on page 6-154.

Related references
2.1 Types of target connections on page 2-28.

2.6.2 Downloading and debugging an Android application
Use the Download and debug an Android application option to download and install your
application on the Android target and load and start an application rewind debug session.

Prerequisites 

Before connecting, you must:

• Ensure that the ADB application bundle is available under the PATH environment variable on
your workstation.

• Obtain root access on the Android device.
• Ensure that the Android target is booted up and running.

Procedure 

1. From the main menu, select Window > Open Perspective > Other > DS-5 Debug to switch
to the DS-5 debug perspective.

2. From the Run menu, select Debug Configurations....
3. Select DS-5 Debugger from the configuration tree and then click New launch configuration

to create a new configuration.
4. In the Name field, enter a suitable name for the new configuration.
5. Select the Connection tab to configure the target connection:

a) In the Select target panel, select Android Application Debug > Native Application/
Library Debug with Rewind Support > APK Native Library Debug via undodb-
server > Download and debug an Android application.

b) Select your device from the Connections panel.
c) Accept the default values for the UndoDB-server (TCP) Port.

6. Select the Files tab to define the application file and libraries.
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a) In the Android panel, select the Project directory and APK file that you want to use. The
Process and Activity fields are populated by the AndroidManifest.xml file. If needed,
select a different Activity.

b) In the Files panel, select the files on the host that you want the debugger to use to load the
debug information.

 Note 

Options in the Files tab are dependent on the type of debug operation that you select.

7. Select the Debugger tab to configure the debugger settings.
a) In the Run control panel, select Connect only.
b) In the Host working directory panel, configure the host working directory or use the

default.
c) In the Paths panel, specify any source or library search directories on the host that the

debugger uses when it displays source code.
8. Click Apply to save the configuration settings.
9. Click Debug to connect to the target.

Related concepts
6.14 About application rewind on page 6-154.

Related references
2.1 Types of target connections on page 2-28.
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2.7 Configuring a connection to a bare-metal target
Describes how to download and connect to an application running on a target using a debug
hardware adapter.

Prerequisites 

Before connecting you must ensure that you have the target IP address or name for the connection
between the debugger and the debug hardware adapter.

Procedure 

1. Select Window > Open Perspective > DS-5 Debug from the main menu.
2. Select Debug Configurations... from the Run menu.
3. Select DS-5 Debugger from the configuration tree and then click on New to create a new

configuration.
4. In the Name field, enter a suitable name for the new configuration.
5. Click on the Connection tab to configure a DS-5 Debugger target connection:

a) Select the required platform. For example, ARM-Versatile Express A9x4, Bare Metal
Debug, Debug and Trace Cortex-A9x4 SMP via DSTREAM.

b) Configure the connection between the debugger and the debug hardware adapter.
6. Click on the Files tab to define the target environment and select debug versions of the

application file and libraries on the host that you want the debugger to use.
a) In the Target Configuration panel, select the application on the host that you want to

download to the target.
7. Click on the Debugger tab to configure the debugger settings.

a) In the Run control panel, specify the actions that you want the debugger to do after
connection to the target.

b) Configure the host working directory or use the default.
c) In the Paths panel, specify any source search directories on the host that the debugger uses

when it displays source code.
8. If required, click on the Arguments tab to enter arguments that are passed, using semihosting,

to the application when the debug session starts.
9. Click on Apply to save the configuration settings.
10. Click on Debug to connect to the target.
11. Debugging requires the DS-5 Debug perspective. If the Confirm Perspective Switch dialog

box opens, click Yes to switch perspective.

When connected and the DS-5 Debug perspective opens you are presented with all the relevant
views and editors.

For more information on these options, use the dynamic help.

Related tasks
2.12 Exporting an existing launch configuration on page 2-53.
2.13 Importing an existing launch configuration on page 2-56.
2.2 Configuring a connection to a Fixed Virtual Platform (FVP) on page 2-29.
2.3 Configuring a connection to a Linux target using gdbserver on page 2-31.
2.4 Configuring a connection to a Linux Kernel on page 2-33.
2.8 Configuring an Event Viewer connection to a bare-metal target on page 2-45.
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Related references
10.35 Debug Configurations - Connection tab on page 10-269.
10.36 Debug Configurations - Files tab on page 10-272.
10.37 Debug Configurations - Debugger tab on page 10-276.
10.38 Debug Configurations - OS Awareness tab on page 10-279.
10.39 Debug Configurations - Arguments tab on page 10-280.
10.40 Debug Configurations - Environment tab on page 10-282.
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2.8 Configuring an Event Viewer connection to a bare-metal target
Describes how to connect to a bare-metal target.

The Event Viewer allows you to capture and view textual logging information from bare-metal
applications. Logging is captured from your application using annotations that you must add to the
source code.

 Note 

The Event Viewer tab in the Debug Configurations dialog box is only enabled for targets where
System Trace Macrocell (STM) and Instrumentation Trace Macrocell (ITM) capture is supported.

Prerequisites 

Before connecting you must ensure that you:

• Have the target IP address or name for the connection between the debugger and the debug
hardware agent.

• Annotate your application source code with logging points and recompile it. See the ITM and
Event Viewer Example for Versatile Express A9x4 provided with DS-5 for more information.

Procedure 

1. Select Window > Open Perspective > DS-5 Debug from the main menu.
2. Select Debug Configurations... from the Run menu.
3. Select DS-5 Debugger from the configuration tree and then click on New to create a new

configuration.
4. In the Name field, enter a suitable name for the new configuration.
5. Click on the Connection tab to configure a DS-5 Debugger target connection:

a) Select the required platform. For example, ARM-Versatile Express A9x4, Bare Metal
Debug, Debug and Trace Cortex-A9x4 SMP via DSTREAM.

b) Configure the connection between the debugger and the debug hardware agent.
6. Click on the Files tab to define the target environment and select debug versions of the

application file and libraries on the host that you want the debugger to use.
a) In the Target Configuration panel, select the application on the host that you want to

download to the target.
7. Click on the Debugger tab to configure the debugger settings.

a) In the Run control panel, specify the actions that you want the debugger to do after
connection to the target.

b) Configure the host working directory or use the default.
c) In the Paths panel, specify any source search directories on the host that the debugger uses

when it displays source code.
8. If required, click on the Arguments tab to enter arguments that are passed, using semihosting,

to the application when the debug session starts.
9. Click on the Event Viewer tab to configure the ITM capture settings.

a) Select Enable Event Viewer for ITM events.
b) Enter the maximum size of the trace buffer. For example, you can enter 100MB for a

DSTREAM connection. Be aware that larger buffers have a performance impact by taking
longer to process but collect more trace data.

10. Click on Apply to save the configuration settings.
11. Click on Debug to connect to the target.
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12. Debugging requires the DS-5 Debug perspective. If the Confirm Perspective Switch dialog
box opens, click Yes to switch perspective.

When connected and the DS-5 Debug perspective opens you are presented with all the relevant
Channel editors for the Event Viewer.

For more information on these options, use the dynamic help.

Related tasks
2.12 Exporting an existing launch configuration on page 2-53.
2.13 Importing an existing launch configuration on page 2-56.
2.2 Configuring a connection to a Fixed Virtual Platform (FVP) on page 2-29.
2.3 Configuring a connection to a Linux target using gdbserver on page 2-31.
2.4 Configuring a connection to a Linux Kernel on page 2-33.
2.7 Configuring a connection to a bare-metal target on page 2-43.

Related references
10.35 Debug Configurations - Connection tab on page 10-269.
10.36 Debug Configurations - Files tab on page 10-272.
10.37 Debug Configurations - Debugger tab on page 10-276.
10.38 Debug Configurations - OS Awareness tab on page 10-279.
10.39 Debug Configurations - Arguments tab on page 10-280.
10.40 Debug Configurations - Environment tab on page 10-282.
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2.9 About the target configuration import utility
 

The import utility, cdbimporter, aims to provide an easy method to import platform information
into DS-5, and so provide limited debug and trace support for the platform through RVI ,
DSTREAM , VSTREAM, or model connections.

A database holds the target configuration and connection settings in DS-5. The import utility
creates platform entries in a new configuration database using information from:

• A configuration file created and saved using the Debug Hardware Configuration utility,
dbghwconfig or rviconfig.

 Note 

DS-5 is not yet capable of creating a configuration file from within Eclipse.

• A model that provides a CADI server. The model can be already running or you can specify
the path and filename to the executable file in the command-line options.

The import utility creates the following debug operations:

• Single processor and Symmetric MultiProcessing (SMP) bare-metal debug for hardware and
models.

• Single processor and SMP Linux kernel debug for hardware.
• Linux application debug configurations for hardware.

For hardware targets where a trace subsystem is present, appropriate Debug and Trace Services
Layer (DTSL) options are produced. These can include:

• Selection of on-chip (Embedded Trace Buffer (ETB), Micro Trace Buffer (MTB), Trace
Memory Controller (TMC) or other on-chip buffer) or off-chip ( DSTREAM trace buffer)
trace capture

• Cycle-accurate trace capture
• Trace capture range
• Configuration and capture of Instruction Trace Macrocell (ITM) trace to be handled by the

DS-5 Event Viewer.

The import utility does not create:

• debug operations that configure non-instruction trace macrocells other than ITM
• big.LITTLE™ configurations.

For SMP configurations, the Cross Trigger Interface (CTI) synchronization is used on targets
where a suitable CTI is present. Using a CTI produces a much tighter synchronization with a very
low latency in the order of cycles but the CTI must be fully implemented and connected in line
with the ARM reference designs, and must not be used for any other purpose. Synchronization
without using a CTI has a much higher latency, but makes no assumptions about implementation
or usage.

You might have to manually configure off-chip TPIU trace for multiplexed pins and also perform
calibrations to cope with signal timing issues.

If you experience any problems or need to produce other configurations, contact your support
representative.

Assumptions

The import utility makes the following assumptions when creating debug operations:

• There is a linear mapping between trace macrocells and CoreSight™ trace funnel ports.
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• The Embedded Trace Macrocell (ETM)/Program Trace Macrocell (PTM) versions are fixed
for each type of processor.

Table 2-1  ETM/PTM versions for each type of processor

Processor Type ETM/PTM

Cortex™-A15 PTM

Cortex-A7 ETM v3.5

Cortex-A5 ETM v3.5

Cortex-A8 ETM v3.3

Cortex-A9 PTM

Cortex-R4 ETM v3.3

Cortex-R5 ETM v3.3

Cortex-R7 ETM v4

Cortex-M3 ETM v3.4

Cortex-M4 ETM v3.4

ARM9 series ETM v1.x is not supported.

ARM11 series ETM v3.1

• The CTI devices are not used for other operations.
• In a target containing multiple CoreSight ETBs, TPIUs or trace funnels, the import utility

produces configuration for the first example of each trace funnel, ETB, and TPIU with the
lowest base address.

Limitations

It is only possible to import platforms that can be auto-configured using the Debug Hardware
Configuration utility or from a model.

To see a list of the processors supported by DS-5 you can run the import utility with the --list-
cores option (-l).

The import utility produces a basic configuration with appropriate processor and CP15 register
sets.

Related tasks
2.10 Adding a new platform on page 2-49.
2.11 Adding a new configuration database to DS-5 on page 2-51.

Related references
10.42 Configuration database panel on page 10-286.

2 Configuring and connecting to a target
2.9 About the target configuration import utility
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2.10 Adding a new platform
Describes how to create a new configuration database containing a new platform for use with
DS-5.

Procedure 

1. Launch a command-line console:

• On Windows, select Start > All Programs > ARM DS-5 > DS-5 Command Prompt.
• On Linux:

1. Add the install_directory/bin directory to your PATH environment variable. If it
is already configured then you can skip this step.

2. Open a Unix bash shell.
2. Launch the import utility using the following command-line syntax:

cdbimporter --help
cdbimporter [--cdb=cdbpath] --list-cores
cdbimporter [--cdb=cdbpath] [--target-cdb=targetpath] {file.rvc | --
model[=modelpath]} [option]...                

where:

--help
Displays a summary of the main command-line options.

--list-cores
lists all the processors defined by the database supplied in the --cdb option.

--cdb=cdbpath
Specifies a path to the source configuration database (as shipped in DS-5) containing
processor and register definitions to identify the target.

--target-cdb=targetpath
Directory where the destination database is to reside. ARM recommends that you
build separate configuration databases in your own workspace to avoid accidental loss
of data when updating DS-5. You can specify multiple configuration databases in
DS-5 using the Preferences dialog. This enables platforms in the new database to use
existing processor and register definitions.

file.rvc
Imports from a configuration file (.rvc). You can use the Debug Hardware
Configuration utility, dbghwconfig or rviconfig to connect to the target and save
the information in a file. The resultant file contains limited debug and trace support
for the platform that can be used to populate the DS-5 configuration database.

--model=modelpath
Imports from a model that provides a CADI server.

• If you supply the modelpath to the model executable, the utility launches the
model for interrogation so that it can determine the connection settings that DS-5
uses to automatically launch the model on connection.

• If you do not supply the modelpath to the model executable, you can force the
utility to search for a running model to interrogate. You can then manually enter
the data for the connection to the model. For example, processors names, IDs, and
processor definitions. If you use this option then you must launch the model
manually before connecting DS-5 to it.

option
Where option can be any of the following:

2 Configuring and connecting to a target
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--no-ctis
Disables the use of Cross Trigger Interface (CTI) synchronization in the
resulting platform.

--no-trace
Disables the use of trace components in the resulting platform.

--use-defaults
Displays default input when the database requires a user input. This does not
apply to the output database path.

--toolkit=key
Specifies a comma separated list of toolkits.

3. During the import process, the import utility enables you to modify details about the
processors of the new platform. Follow the instructions in the command-line prompts.

On successful completion a new configuration database is created containing the new platform
that can be added to DS-5.

Related concepts
2.9 About the target configuration import utility on page 2-47.

Related tasks
2.11 Adding a new configuration database to DS-5 on page 2-51.

Related references
10.42 Configuration database panel on page 10-286.

2 Configuring and connecting to a target
2.10 Adding a new platform
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2.11 Adding a new configuration database to DS-5
Describes how to add a new configuration database to DS-5.

Procedure 

1. Launch Eclipse.
2. Select Preferences from Windows menu.
3. Expand the DS-5 configuration group.
4. Select Configuration Database.
5. Click Add... to locate the new database:

a) Select the entire directory.
b) Click OK to close the dialog box.

6. Position the new database:
a) Select the new database.
b) Click Up or Down as required.

 Note 

DS-5 provides built-in databases containing a default set of target configurations. You can
enable or disable these but not delete them.

7. Click Rebuild database....
8. Click OK to close the dialog box and save the settings.

2 Configuring and connecting to a target
2.11 Adding a new configuration database to DS-5
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Figure 2-1  Adding a new configuration database

 Note 

DS-5 processes the databases from top to bottom with the information in the lower databases
replacing information in the higher databases. For example, if you want to produce a modified
Cortex-A15 processor definition with different registers then those changes can be added to a
new database that resides lower down in the list.

Related concepts
2.9 About the target configuration import utility on page 2-47.

Related tasks
2.10 Adding a new platform on page 2-49.

Related references
10.42 Configuration database panel on page 10-286.

2 Configuring and connecting to a target
2.11 Adding a new configuration database to DS-5

ARM DUI0446P Copyright © 2010-2013 ARM. All rights reserved. 2-52
Non-Confidential



2.12 Exporting an existing launch configuration
Describes how to export an existing launch configuration.

Procedure 

1. Select Export... from the File menu.
2. In the Export dialog box, expand the Run/Debug group and select Launch Configurations.

Figure 2-2  Export launch configuration dialog box
3. Click on Next.
4. In the Export Launch Configurations dialog box:

a) Expand the DS-5 Debugger group and then select one or more launch configurations.
b) Click on Browse... to select the required location in the local file system.
c) Select the folder and then click OK.

2 Configuring and connecting to a target
2.12 Exporting an existing launch configuration
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Figure 2-3  Launch configuration selection panels
5. If required, select Overwrite existing file(s) without warning.
6. Click on Finish.

Related tasks
2.13 Importing an existing launch configuration on page 2-56.
2.2 Configuring a connection to a Fixed Virtual Platform (FVP) on page 2-29.
2.3 Configuring a connection to a Linux target using gdbserver on page 2-31.
2.4 Configuring a connection to a Linux Kernel on page 2-33.

2 Configuring and connecting to a target
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2.7 Configuring a connection to a bare-metal target on page 2-43.
2.8 Configuring an Event Viewer connection to a bare-metal target on page 2-45.

2 Configuring and connecting to a target
2.12 Exporting an existing launch configuration
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2.13 Importing an existing launch configuration
Describes how to import an existing launch configuration into Eclipse.

Procedure 

1. Select Import... from the File menu.
2. In the Import dialog box, expand the Run/Debug group and select Launch Configurations.

Figure 2-4  Import launch configuration dialog box
3. Click on Next.
4. Click on Browse... to select the required location in the local file system.
5. Select the folder containing the launch files and then click OK.
6. Select the checkboxes for the required folder and launch file(s).

2 Configuring and connecting to a target
2.13 Importing an existing launch configuration
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Figure 2-5  Launch configuration file selection panels
7. If you are replacing an existing configuration with the same name then select Overwrite

existing launch configurations without warning.
8. Click on Finish.

Related tasks
2.12 Exporting an existing launch configuration on page 2-53.
2.2 Configuring a connection to a Fixed Virtual Platform (FVP) on page 2-29.
2.3 Configuring a connection to a Linux target using gdbserver on page 2-31.
2.4 Configuring a connection to a Linux Kernel on page 2-33.
2.7 Configuring a connection to a bare-metal target on page 2-43.
2.8 Configuring an Event Viewer connection to a bare-metal target on page 2-45.

2 Configuring and connecting to a target
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2.14 Disconnecting from a target
Describes how to disconnect from a target using the DS-5 Debug perspective.

Procedure 

You can use either the Debug Control or Commands view as follows:

• Click on the Disconnect from Target toolbar icon in the Debug Control view.
• Alternatively, in the Commands view you can:

1. Enter quit in the Command field.
2. Click Submit.

Related references
10.6 Commands view on page 10-204.
10.7 Debug Control view on page 10-207.
10.50 DS-5 Debugger menu and toolbar icons on page 10-296.

Related information
DS-5 Debugger commands.

2 Configuring and connecting to a target
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Chapter 3
Working with the target configuration editor

Describes how to use the editor when developing a project for an ARM target.
It contains the following:

• 3.1 About the target configuration editor on page 3-60.
• 3.2 Target configuration editor - Overview tab on page 3-61.
• 3.3 Target configuration editor - Memory tab on page 3-63.
• 3.4 Target configuration editor - Peripherals tab on page 3-65.
• 3.5 Target configuration editor - Registers tab on page 3-67.
• 3.6 Target configuration editor - Group View tab on page 3-69.
• 3.7 Target configuration editor - Enumerations tab on page 3-72.
• 3.8 Target configuration editor - Configurations tab on page 3-74.
• 3.9 Scenario demonstrating how to create a new target configuration file on page 3-76.
• 3.10 Creating a power domain for a target on page 3-88.
• 3.11 Creating a Group list on page 3-90.
• 3.12 Importing an existing target configuration file on page 3-92.
• 3.13 Exporting a target configuration file on page 3-94.
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3.1 About the target configuration editor
 

The target configuration editor provides forms and graphical views to easily create and edit Target
Configuration Files (TCF) describing memory mapped peripheral registers present on a device. It
also provides import and export wizards for compatibility with the file formats used in μVision
System Viewer.

TCF files must have the file extension .tcf to invoke this editor.

If this is not the default editor, right-click on your source file in the Project Explorer view and
select Open With > Target Configuration Editor from the context menu.

The target configuration editor also provides a hierarchical tree using the Outline view. Click on
an entry in the Outline view to move the focus of the editor to the relevant tab and selected field.
If this view is not visible, select Window > Show View > Outline from the main menu.

Directories containing TCF files can be specified in DS-5 Debugger launch configurations.

Related references
3.2 Target configuration editor - Overview tab on page 3-61.
3.3 Target configuration editor - Memory tab on page 3-63.
3.4 Target configuration editor - Peripherals tab on page 3-65.
3.5 Target configuration editor - Registers tab on page 3-67.
3.6 Target configuration editor - Group View tab on page 3-69.
3.7 Target configuration editor - Enumerations tab on page 3-72.
3.8 Target configuration editor - Configurations tab on page 3-74.
10.36 Debug Configurations - Files tab on page 10-272.
3.9 Scenario demonstrating how to create a new target configuration file on page 3-76.

3 Working with the target configuration editor
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3.2 Target configuration editor - Overview tab
 

A graphical view showing general information about the current target and summary information
for all the tabs.

General Information

Unique Name
Unique board name (mandatory).

Category
Name of the manufacturer.

Inherits
Name of the board, memory region or peripheral to inherit data from. You must
use the Includes panel to populate this drop-down menu.

Endianness
Byte order of the target.

TrustZone
TrustZone support for the target. If supported, the Memory and Peripheral tabs
are displayed with a TrustZone Address Type field.

Power Domain
Power Domain support for the target. If supported, the Memory and Peripheral
tabs are displayed with a Power Domain Address Type field. Also, the
Configurations tab includes an additional Power Domain Configurations
group.

Description
Board description.

Includes
Include files for use when inheriting target data that is defined in an external file.
Populates the Inherits drop-down menu.

The Overview tab also provides a summary of the other tabs available in this view, together with
the total number of items defined in that view.

3 Working with the target configuration editor
3.2 Target configuration editor - Overview tab
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Figure 3-1  Target configuration editor - Overview tab

Mandatory fields are indicated by an asterisk. Toolbar buttons and error messages are displayed in
the header panel as appropriate.

Related concepts
3.1 About the target configuration editor on page 3-60.

Related tasks
3.10 Creating a power domain for a target on page 3-88.

Related references
3.3 Target configuration editor - Memory tab on page 3-63.
3.4 Target configuration editor - Peripherals tab on page 3-65.
3.5 Target configuration editor - Registers tab on page 3-67.
3.6 Target configuration editor - Group View tab on page 3-69.
3.7 Target configuration editor - Enumerations tab on page 3-72.
3.8 Target configuration editor - Configurations tab on page 3-74.
3.9 Scenario demonstrating how to create a new target configuration file on page 3-76.

3 Working with the target configuration editor
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3.3 Target configuration editor - Memory tab
 

A graphical view or tabular view that enables you to define the attributes for each of the block of
memory on your target. These memory blocks are used to ensure that your debugger accesses the
memory on your target in the right way.

Graphical view

In the graphical view, the following display options are available:

View by Map Rule
Filter the graphical view based on the selected rule.

View by Address Type
Filter the graphical view based on secure or non-secure addresses. Available only when
TrustZone is supported. You can select TrustZone support in the Overview tab.

View by Power Domain
Filter the graphical view based on the power domain. Available only when Power
Domain is supported. You can select Power Domain support in the Overview tab.

Add button
Add a new memory region.

Remove button
Remove the selected memory region.

Graphical and tabular views

In both the graphical view and the tabular view, the following settings are available:

Unique Name
Name of the selected memory region (mandatory).

Name
User-friendly name for the selected memory region.

Description
Detailed description of the selected memory region.

Base Address
Absolute address or the Name of the memory region to use as a base address. The default
is an absolute starting address of 0x0.

Offset
Offset that is added to the base address (mandatory).

Size
Size of the selected memory region in bytes (mandatory).

Width
Access width of the selected memory region.

Access
Access mode for the selected memory region.

Apply Map Rule (graphical view) Map Rule (tablular view)
Mapping rule to be applied to the selected memory region. You can use the Map Rules
tab to create and modify rules for control registers.

More... (tablular view)
In the tabular view, the ... button is displayed when you select More... cell. Click the ...
button to display the Context and Parameters dialog box.

Context
Debugger plug-in. If you want to pass parameters to a specific debugger, select a plug-in
and enter the associated parameters.

3 Working with the target configuration editor
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Parameters
Parameters associated with the selected debugger plug-in. Select the required debugger
plug-in from the Context drop-down menu to enter parameters for that debugger plug-in.

Figure 3-2  Target configuration editor - Memory tab

Mandatory fields are indicated by an asterisk. Toolbar buttons and error messages are displayed in
the header panel as appropriate.

Related concepts
3.1 About the target configuration editor on page 3-60.

Related tasks
3.9.1 Creating a memory map on page 3-77.
3.9.8 Creating a memory region for remapping by a control register on page 3-84.
3.9.9 Applying the map rules to the overlapping memory regions on page 3-85.

Related references
3.2 Target configuration editor - Overview tab on page 3-61.
3.4 Target configuration editor - Peripherals tab on page 3-65.
3.5 Target configuration editor - Registers tab on page 3-67.
3.6 Target configuration editor - Group View tab on page 3-69.
3.7 Target configuration editor - Enumerations tab on page 3-72.
3.8 Target configuration editor - Configurations tab on page 3-74.

3 Working with the target configuration editor
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3.4 Target configuration editor - Peripherals tab
 

A graphical view or tabular view that enables you to define peripherals on your target. They can
then be mapped in memory, for display and control, and accessed for block data, when available.
You define the peripheral in terms of the area of memory it occupies.

Graphical view

In the graphical view, the following display options are available:

View by Address Type
Filter the graphical view based on secure or non-secure addresses. Available only when
TrustZone is supported. You can select TrustZone support in the Overview tab.

View by Power Domain
Filter the graphical view based on the power domain. Available only when Power
Domain is supported. You can select Power Domain support in the Overview tab.

Add button
Add a new peripheral.

Remove button
Remove the selected peripheral and, if required, the associated registers.

Graphical and tabular views

In both the graphical view and the tabular view, the following settings are available:

Unique Name
Name of the selected peripheral (mandatory).

Name
User-friendly name for the selected peripheral.

Description
Detailed description of the selected peripheral.

Base Address
Absolute address or the Name of the memory region to use as a base address. The default
is an absolute starting address of 0x0.

Offset
Offset that is added to the base address (mandatory).

Size
Size of the selected peripheral in bytes.

Width
Access width of the selected peripheral in bytes.

Access
Access mode for the selected peripheral.

3 Working with the target configuration editor
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Figure 3-3  Target configuration editor - Peripherals tab

Mandatory fields are indicated by an asterisk. Toolbar buttons and error messages are displayed in
the header panel as appropriate.

Related concepts
3.1 About the target configuration editor on page 3-60.

Related tasks
3.9.2 Creating a peripheral on page 3-78.

Related references
3.2 Target configuration editor - Overview tab on page 3-61.
3.3 Target configuration editor - Memory tab on page 3-63.
3.5 Target configuration editor - Registers tab on page 3-67.
3.6 Target configuration editor - Group View tab on page 3-69.
3.7 Target configuration editor - Enumerations tab on page 3-72.
3.8 Target configuration editor - Configurations tab on page 3-74.

3 Working with the target configuration editor
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3.5 Target configuration editor - Registers tab
 

A tabular view that enables you to define memory mapped registers for your target. Each register
is named and typed and can be subdivided into bit fields (any number of bits) which act as
subregisters.

Unique Name
Name of the register (mandatory).

Name
User-friendly name for the register.

Base Address
Absolute address or the Name of the memory region to use as a base address. The default
is an absolute starting address of 0x0.

Offset
Offset that is added to the base address (mandatory).

Size
Size of the register in bytes (mandatory).

Access size
Access width of the register in bytes.

Access
Access mode for the selected register.

Description
Detailed description of the register.

Peripheral
Associated peripheral, if applicable.

The Bitfield button opens a table displaying the following information:

Unique Name
Name of the selected bitfield (mandatory).

Name
User-friendly name for the selected bitfield.

Low Bit
Zero indexed low bit number for the selected bitfield (mandatory).

High Bit
Zero indexed high bit number for the selected bitfield (mandatory).

Access
Access mode for the selected bitfield.

Description
Detailed description of the selected bitfield.

Enumeration
Associated enumeration for the selected bitfield, if applicable.

3 Working with the target configuration editor
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Figure 3-4  Target configuration editor - Registers tab

Mandatory fields are indicated by an asterisk. Toolbar buttons and error messages are displayed in
the header panel as appropriate.

Related concepts
3.1 About the target configuration editor on page 3-60.

Related tasks
3.9.3 Creating a standalone register on page 3-79.
3.9.4 Creating a peripheral register on page 3-80.
3.9.6 Assigning enumerations to a peripheral register on page 3-82.
3.9.5 Creating enumerations for use with a peripheral register on page 3-81.
3.9.6 Assigning enumerations to a peripheral register on page 3-82.

Related references
3.2 Target configuration editor - Overview tab on page 3-61.
3.3 Target configuration editor - Memory tab on page 3-63.
3.4 Target configuration editor - Peripherals tab on page 3-65.
3.6 Target configuration editor - Group View tab on page 3-69.
3.7 Target configuration editor - Enumerations tab on page 3-72.
3.8 Target configuration editor - Configurations tab on page 3-74.

3 Working with the target configuration editor
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3.6 Target configuration editor - Group View tab
 

A list view that enables you to select peripherals for use by the debugger.

Group View List
Empty list that enables you to add frequently used peripherals to the debugger.

Add a new group
Creates a group that you can personalize with peripherals.

Remove the selected group
Removes a group from the list.

Available Peripheral List
A list of the available peripherals. You can select peripherals from this view to add to the
Group View List.

3 Working with the target configuration editor
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Figure 3-5  Target configuration editor - Group View tab

Mandatory fields are indicated by an asterisk. Toolbar buttons and error messages are displayed in
the header panel as appropriate.

Related concepts
3.1 About the target configuration editor on page 3-60.

Related tasks
3.11 Creating a Group list on page 3-90.

Related references
3.2 Target configuration editor - Overview tab on page 3-61.
3.3 Target configuration editor - Memory tab on page 3-63.
3.4 Target configuration editor - Peripherals tab on page 3-65.
3.5 Target configuration editor - Registers tab on page 3-67.

3 Working with the target configuration editor
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3.7 Target configuration editor - Enumerations tab on page 3-72.
3.8 Target configuration editor - Configurations tab on page 3-74.

3 Working with the target configuration editor
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3.7 Target configuration editor - Enumerations tab
 

A tabular view that enables you to assign values to meaningful names for use by registers you
have defined. Enumerations can be used, instead of values, when a register is displayed in the
Registers view. This setting enables you to define the names associated with different values.
Names defined in this group are displayed in the Registers view, and can be used to change
register values.

Register bit fields are numbered 0, 1, 2,... regardless of their position in the register.

For example, you might want to define ENABLED as 1 and DISABLED as 0.

The following settings are available:

Unique Name
Name of the selected enumeration (mandatory).

Value
Definitions specified as comma separated values for selection in the Registers tab
(mandatory).

Description
Detailed description of the selected enumeration.

Figure 3-6  Target configuration editor - Enumerations tab

Mandatory fields are indicated by an asterisk. Toolbar buttons and error messages are displayed in
the header panel as appropriate.

3 Working with the target configuration editor
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Related concepts
3.1 About the target configuration editor on page 3-60.

Related tasks
3.9.5 Creating enumerations for use with a peripheral register on page 3-81.
3.9.6 Assigning enumerations to a peripheral register on page 3-82.

Related references
3.2 Target configuration editor - Overview tab on page 3-61.
3.3 Target configuration editor - Memory tab on page 3-63.
3.4 Target configuration editor - Peripherals tab on page 3-65.
3.5 Target configuration editor - Registers tab on page 3-67.
3.6 Target configuration editor - Group View tab on page 3-69.
3.8 Target configuration editor - Configurations tab on page 3-74.
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3.8 Target configuration editor - Configurations tab
 

A tabular view that enables you to:

• Define rules to control the enabling and disabling of memory blocks using target registers.
You specify a register to be monitored, and when the contents match a given value, a set of
memory blocks is enabled. You can define several map rules, one for each of several memory
blocks.

• Define power domains that are supported on your target.

Memory Map Configurations group

The following settings are available in the Memory Map Configurations group:

Unique Name
Name of the rule (mandatory).

Name
User-friendly name for the rule.

Register
Associated control register (mandatory).

Mask
Mask value (mandatory).

Value
Value for a condition (mandatory).

Trigger
Condition that changes the control register mapping (mandatory).

Power Domain Configurations group

The Power Domain Configurations group

The following settings are available in this group, and all are mandatory:

Unique Name
Name of the power domain.

Wake-up Conditions
User-friendly name for the rule:

Register
An associated control register that you have previously created.

Mask
Mask value.

Value
Value for a condition.

Power State
The power state of the power domain:

• Active.
• Inactive.
• Retention.
• Off.

3 Working with the target configuration editor
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Figure 3-7  Target configuration editor - Configuration tab

Mandatory fields are indicated by an asterisk. Toolbar buttons and error messages are displayed in
the header panel as appropriate.

Related concepts
3.1 About the target configuration editor on page 3-60.

Related tasks
3.9.3 Creating a standalone register on page 3-79.
3.9.7 Creating remapping rules for a control register on page 3-83.
3.10 Creating a power domain for a target on page 3-88.

Related references
3.2 Target configuration editor - Overview tab on page 3-61.
3.3 Target configuration editor - Memory tab on page 3-63.
3.4 Target configuration editor - Peripherals tab on page 3-65.
3.5 Target configuration editor - Registers tab on page 3-67.
3.6 Target configuration editor - Group View tab on page 3-69.
3.7 Target configuration editor - Enumerations tab on page 3-72.
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3.9 Scenario demonstrating how to create a new target configuration file
 

This is a ficticious scenario to demonstrate how to create a new Target Configuration File (TCF)
containing the following memory map and register definitions. The individual tasks required to
complete each step of this tutorial are listed below.

• Boot ROM: 0x0 - 0x8000
• SRAM: 0x0 - 0x8000
• Internal RAM: 0x8000 - 0x28000
• System Registers that contain memory mapped peripherals:

0x10000000 - 0x10001000.

— A basic standalone LED register. This register is located at 0x10000008 and is used to
write a hexadecimal value that sets the corresponding bits to 1 to illuminate the respective
LEDs.

1Reserved

31 8 7 0

8 7 6 5 4 3 2

LED

Figure 3-8  LED register and bitfields
— DMA map register. This register is located at 0x10000064 and controls the mapping of

external peripheral DMA request and acknowledge signals to DMA channel 0.

Table 3-1  DMA map register SYS_DMAPSR0

Bits [31:8] - Reserved. Use read-modify-write to preserve value

Bit [7] Read/Write Set to 1 to enable mapping of external peripheral DMA signals to the
DMA controller channel.

Bits [6:5] - Reserved. Use read-modify-write to preserve value

Bits [4:0] Read/Write FPGA peripheral mapped to this channel

b00000 = AACI Tx
b00001 = AACI Rx
b00010 = USB A
b00011 = USB B
b00100 = MCI 0

— The core module and LCD control register. This register is located at 0x1000000C and
controls a number of user-configurable features of the core module and the display
interface on the baseboard.
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Figure 3-9  Core module and LCD control register

This register uses bit 2 to control the remapping of an area of memory as shown in the
following table.

Table 3-2  Control bit that remaps an area of memory

Bits Name Access Function

[2] REMAP Read/Write 0 = Flash ROM at address 0 1 = SRAM at address 0.

• Clearing bit 2 (CM_CTRL = 0) generates the following memory map:

— 
0x0000 - 0x8000 Boot_ROM

— 
0x8000 - 0x28000 32bit_RAM

• Setting bit 2 (CM_CTRL = 1) generates the following memory map:

— 
0x0000 - 0x8000 32bit_RAM_block1_alias

— 
0x8000 - 0x28000 32bit_RAM

It contains the following:

• 3.9.1 Creating a memory map on page 3-77.
• 3.9.2 Creating a peripheral on page 3-78.
• 3.9.3 Creating a standalone register on page 3-79.
• 3.9.4 Creating a peripheral register on page 3-80.
• 3.9.5 Creating enumerations for use with a peripheral register on page 3-81.
• 3.9.6 Assigning enumerations to a peripheral register on page 3-82.
• 3.9.7 Creating remapping rules for a control register on page 3-83.
• 3.9.8 Creating a memory region for remapping by a control register on page 3-84.
• 3.9.9 Applying the map rules to the overlapping memory regions on page 3-85.

3.9.1 Creating a memory map
Describes how to create a new memory map.

Procedure 

1. Add a new file with the .tcf file extension to an open project.
The editor opens with the Overview tab activated.

2. Click on the Overview tab, enter a unique board name, for example: My-Dev-Board.
3. Click on the Memory tab.
4. Click the Switch to table button in the top right of the view.

3 Working with the target configuration editor
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5. Enter the data as shown in the following figure.

Figure 3-10  Creating a Memory map

On completion, you can switch back to the graphical view to see the color coded stack of memory
regions.

Related tasks
3.9.2 Creating a peripheral on page 3-78.
3.9.3 Creating a standalone register on page 3-79.
3.9.4 Creating a peripheral register on page 3-80.
3.9.5 Creating enumerations for use with a peripheral register on page 3-81.
3.9.6 Assigning enumerations to a peripheral register on page 3-82.
3.9.7 Creating remapping rules for a control register on page 3-83.
3.9.8 Creating a memory region for remapping by a control register on page 3-84.
3.9.9 Applying the map rules to the overlapping memory regions on page 3-85.

Related references
3.9 Scenario demonstrating how to create a new target configuration file on page 3-76.
3.3 Target configuration editor - Memory tab on page 3-63.

3.9.2 Creating a peripheral
Describes how to create a peripheral.

Procedure 

1. Click on the Peripherals tab.
2. Click the Switch to table button in the top right of the view.
3. Enter the data as shown in the following figure.
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Figure 3-11  Creating a peripheral

On completion, you can switch back to the graphical view to see the color coded stack of
peripherals.

Related tasks
3.9.1 Creating a memory map on page 3-77.
3.9.3 Creating a standalone register on page 3-79.
3.9.4 Creating a peripheral register on page 3-80.
3.9.5 Creating enumerations for use with a peripheral register on page 3-81.
3.9.6 Assigning enumerations to a peripheral register on page 3-82.
3.9.7 Creating remapping rules for a control register on page 3-83.
3.9.8 Creating a memory region for remapping by a control register on page 3-84.
3.9.9 Applying the map rules to the overlapping memory regions on page 3-85.

Related references
3.9 Scenario demonstrating how to create a new target configuration file on page 3-76.
3.4 Target configuration editor - Peripherals tab on page 3-65.

3.9.3 Creating a standalone register
Describes how to create a basic standalone register.

Procedure 

1. Click on the Registers tab.
2. Enter the register data as shown in the following figure.
3. Bitfield data is entered in a floating table associated with the selected register. Select the

Unique name field containing the register name, BRD_SYS_LED.
4. Click on the Edit Bitfield button in the top right corner of the view.
5. In the floating Bitfield table, enter the data as shown in the following figure. If required, you

can dock this table below the register table by clicking on the title bar of the Bitfield table and
dragging it to the base of the register table.
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Figure 3-12  Creating a standalone register

On completion, close the floating table.

Related tasks
3.9.1 Creating a memory map on page 3-77.
3.9.2 Creating a peripheral on page 3-78.
3.9.4 Creating a peripheral register on page 3-80.
3.9.5 Creating enumerations for use with a peripheral register on page 3-81.
3.9.6 Assigning enumerations to a peripheral register on page 3-82.
3.9.7 Creating remapping rules for a control register on page 3-83.
3.9.8 Creating a memory region for remapping by a control register on page 3-84.
3.9.9 Applying the map rules to the overlapping memory regions on page 3-85.

Related references
3.9 Scenario demonstrating how to create a new target configuration file on page 3-76.
3.5 Target configuration editor - Registers tab on page 3-67.
3.8 Target configuration editor - Configurations tab on page 3-74.

3.9.4 Creating a peripheral register
Describes how to create a peripheral register.

Procedure 

1. Click on the Registers tab, if it is not already active.
2. Enter the peripheral register and associated bitfield data as shown in the following figure.
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Figure 3-13  Creating a peripheral register

Related tasks
3.9.1 Creating a memory map on page 3-77.
3.9.2 Creating a peripheral on page 3-78.
3.9.3 Creating a standalone register on page 3-79.
3.9.5 Creating enumerations for use with a peripheral register on page 3-81.
3.9.6 Assigning enumerations to a peripheral register on page 3-82.
3.9.7 Creating remapping rules for a control register on page 3-83.
3.9.8 Creating a memory region for remapping by a control register on page 3-84.
3.9.9 Applying the map rules to the overlapping memory regions on page 3-85.

Related references
3.9 Scenario demonstrating how to create a new target configuration file on page 3-76.
3.5 Target configuration editor - Registers tab on page 3-67.

3.9.5 Creating enumerations for use with a peripheral register
Describes how to create enumerations for use with a peripheral.

With more complex peripherals it can be useful to create and assign enumerations to particular
peripheral bit patterns so that you can select from a list of enumerated values rather than write the
equivalent hexadecimal value. (For example: Enabled/Disabled, On/Off).

Procedure 

1. Click on the Enumerations tab.
2. Enter the data as shown in the following figure.
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Figure 3-14  Creating enumerations

Related tasks
3.9.1 Creating a memory map on page 3-77.
3.9.2 Creating a peripheral on page 3-78.
3.9.3 Creating a standalone register on page 3-79.
3.9.4 Creating a peripheral register on page 3-80.
3.9.6 Assigning enumerations to a peripheral register on page 3-82.
3.9.7 Creating remapping rules for a control register on page 3-83.
3.9.8 Creating a memory region for remapping by a control register on page 3-84.
3.9.9 Applying the map rules to the overlapping memory regions on page 3-85.

Related references
3.9 Scenario demonstrating how to create a new target configuration file on page 3-76.
3.5 Target configuration editor - Registers tab on page 3-67.
3.7 Target configuration editor - Enumerations tab on page 3-72.

3.9.6 Assigning enumerations to a peripheral register
Describes how to assign enumerations to a peripheral register.

Procedure 

1. Click on the Registers tab
2. Open the relevant Bitfield table for the DMA peripheral.
3. Assign enumerations as shown in the following figure.
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Figure 3-15  Assigning enumerations

Related tasks
3.9.1 Creating a memory map on page 3-77.
3.9.2 Creating a peripheral on page 3-78.
3.9.3 Creating a standalone register on page 3-79.
3.9.4 Creating a peripheral register on page 3-80.
3.9.5 Creating enumerations for use with a peripheral register on page 3-81.
3.9.7 Creating remapping rules for a control register on page 3-83.
3.9.8 Creating a memory region for remapping by a control register on page 3-84.
3.9.9 Applying the map rules to the overlapping memory regions on page 3-85.

Related references
3.9 Scenario demonstrating how to create a new target configuration file on page 3-76.
3.5 Target configuration editor - Registers tab on page 3-67.
3.5 Target configuration editor - Registers tab on page 3-67.
3.7 Target configuration editor - Enumerations tab on page 3-72.

3.9.7 Creating remapping rules for a control register
Describes how to create remapping rules for the core module and LCD control register.

Procedure 

1. Click on the Configurations tab.
2. Enter the data as shown in the following figure.
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Figure 3-16  Creating remapping rules

Related tasks
3.9.1 Creating a memory map on page 3-77.
3.9.2 Creating a peripheral on page 3-78.
3.9.3 Creating a standalone register on page 3-79.
3.9.4 Creating a peripheral register on page 3-80.
3.9.5 Creating enumerations for use with a peripheral register on page 3-81.
3.9.6 Assigning enumerations to a peripheral register on page 3-82.
3.9.8 Creating a memory region for remapping by a control register on page 3-84.
3.9.9 Applying the map rules to the overlapping memory regions on page 3-85.

Related references
3.9 Scenario demonstrating how to create a new target configuration file on page 3-76.
3.8 Target configuration editor - Configurations tab on page 3-74.

3.9.8 Creating a memory region for remapping by a control register
Describes how to create a new memory region that can be used for remapping when bit 2 of the
control register is set.

Procedure 

1. Click on the Memory tab.
2. Switch to the table view by clicking on the relevant button in the top corner.
3. Enter the data as shown in the following figure.
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Figure 3-17  Creating a memory region for remapping by a control register

Related tasks
3.9.1 Creating a memory map on page 3-77.
3.9.2 Creating a peripheral on page 3-78.
3.9.3 Creating a standalone register on page 3-79.
3.9.4 Creating a peripheral register on page 3-80.
3.9.5 Creating enumerations for use with a peripheral register on page 3-81.
3.9.6 Assigning enumerations to a peripheral register on page 3-82.
3.9.7 Creating remapping rules for a control register on page 3-83.
3.9.9 Applying the map rules to the overlapping memory regions on page 3-85.

Related references
3.9 Scenario demonstrating how to create a new target configuration file on page 3-76.
3.3 Target configuration editor - Memory tab on page 3-63.

3.9.9 Applying the map rules to the overlapping memory regions
Describes how to apply the map rules to the overlapping memory regions.

Procedure 

1. Switch back to the graphic view by clicking on the relevant button in the top corner.
2. Select the overlapping memory region M32bit_RAM_block1_alias and then select

Remap_RAM_block1 from the Apply Map Rule drop-down menu as shown in the following
figure.
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Figure 3-18  Applying the Remap_RAM_block1 map rule
3. To apply the other map rule you must select Remap_ROM in the the View by Map Rule

drop-down menu at the top of the stack view.
4. Select the overlapping memory region Boot_ROM and then select Remap_ROM from the

Apply Map Rule drop-down menu as shown in the following figure.
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Figure 3-19  Applying the Remap_ROM map rule
5. Save the file.

Related tasks
3.9.1 Creating a memory map on page 3-77.
3.9.2 Creating a peripheral on page 3-78.
3.9.3 Creating a standalone register on page 3-79.
3.9.4 Creating a peripheral register on page 3-80.
3.9.5 Creating enumerations for use with a peripheral register on page 3-81.
3.9.6 Assigning enumerations to a peripheral register on page 3-82.
3.9.7 Creating remapping rules for a control register on page 3-83.
3.9.8 Creating a memory region for remapping by a control register on page 3-84.

Related references
3.9 Scenario demonstrating how to create a new target configuration file on page 3-76.
3.3 Target configuration editor - Memory tab on page 3-63.
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3.10 Creating a power domain for a target
Describes how to create a power domain configuration for your target.

Prerequisites 

Before you create a power domain configuration, you must first create a control register.

Procedure 

1. Click on the Overview tab.
2. Select Supported for the Power Domain setting.
3. Click on the Configurations tab.
4. Expand the Power Domain Configurations group.

Figure 3-20  Power Domain Configurations
5. Click New to create a new power domain.
6. Enter a name in the Unique Name field.
7. Set the following Wake-up Conditions for the power domain:

• Register - a list of registers you have previously created
• Mask
• Value
• Power State.

All settings are mandatory.

Related tasks
3.9.3 Creating a standalone register on page 3-79.
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Related references
3.2 Target configuration editor - Overview tab on page 3-61.
3.8 Target configuration editor - Configurations tab on page 3-74.
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3.11 Creating a Group list
Describes how to create a new group list.

Procedure 

1. Click on the Group View tab.
2. Click Add a new group in the Group View List.
3. Select the new group.

 Note 

You can create a subgroup by selecting a group and clicking Add.

4. Select peripherals and registers from the Available Peripheral List.
5. Press the << Add button to add the selected peripherals to the Group View List.
6. Click the Save icon in the toolbar.
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Figure 3-21  Creating a group list

Related references
3.6 Target configuration editor - Group View tab on page 3-69.
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3.12 Importing an existing target configuration file
Describes how to import an existing target configuration file into the workspace.

Procedure 

1. Select Import from the File menu.
2. Expand the Target Configuration Editor group.
3. Select the required file type.

Figure 3-22  Selecting an existing target configuration file
4. Click on Next.
5. In the Import dialog box, click Browse... to select the folder containing the file.
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Figure 3-23  Importing the target configuration file
6. By default, all the files that can be imported are displayed. If the selection panel shows more

than one file, select the files that you want to import.
7. Select the file that you want to automatically open in the editor.
8. In the Into destination folder field, click Browse... to select an existing project.
9. Click Finish.

The new Target Configuration Files (TCF) is visible in the Project Explorer view.

Related tasks
3.13 Exporting a target configuration file on page 3-94.
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3.13 Exporting a target configuration file
Describes how to export a target configuration file from a project in the workspace to a C header
file.

 Note 

Before using the export wizard, you must ensure that the Target Configuration File (TCF) is open
in the editor view.

Procedure 

1. Select Export from the File menu.
2. Expand the Target Configuration Editor group.
3. Select C Header file.

Figure 3-24  Exporting to C header file
4. Click on Next.
5. By default, the active files that are open in the editor are displayed. If the selection panel

shows more than one file, select the files that you want to export.
6. Click Browse... to select a destination path.
7. If required, select Overwrite existing files without warning.
8. Click on Next.
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Figure 3-25  Selecting the files
9. If the TCF file has multiple boards, select the board that you want to configure the data for.
10. Select the data that you want to export.
11. Select required export options.
12. Click Finish to create the C header file.

Related tasks
3.12 Importing an existing target configuration file on page 3-92.
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Chapter 4
Controlling execution

Describes how to stop the target execution when certain events occur, and when certain conditions
are met.
It contains the following:

• 4.1 About loading an image on to the target on page 4-97.
• 4.2 About loading debug information into the debugger on page 4-99.
• 4.3 About passing arguments to main() on page 4-101.
• 4.4 Running an image on page 4-102.
• 4.5 About breakpoints and watchpoints on page 4-103.
• 4.6 Setting an execution breakpoint on page 4-105.
• 4.7 Working with data watchpoints on page 4-107.
• 4.8 Setting a tracepoint on page 4-109.
• 4.9 Setting Streamline start and stop points on page 4-110.
• 4.10 Setting a conditional breakpoint on page 4-111.
• 4.11 Setting a breakpoint on a specific thread on page 4-114.
• 4.12 Pending breakpoints and watchpoints on page 4-117.
• 4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
• 4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
• 4.15 Stepping through an application on page 4-120.
• 4.16 Handling Unix signals on page 4-122.
• 4.17 Handling processor exceptions on page 4-124.
• 4.18 Configuring the debugger path substitution rules on page 4-126.
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4.1 About loading an image on to the target
 

Before you can start debugging your application image, you must load the files on to the target.
The files on your target must be the same as those on your local host workstation. The code layout
must be identical, but the files on your target do require debug information.

You can manually load the files on to the target or you can configure a debugger connection to
automatically do this after a connection is established. Some target connections do not support
load operations and the relevant menu options are therefore disabled.

After connecting to the target you can also use the Debug Control view menu entry Load... to
load files as required. The following options for loading an image are available:

Load Image Only
Loads the application image on to the target.

Load Image and Debug Info
Loads the application image on to the target and debug information from the same image
into the debugger.

Load Offset
Specifies a decimal or hexadecimal offset that is added to all addresses within the image.
A hexadecimal offset must be prefixed with 0x.

Enable on-demand loading
Specifies how you want the debugger to load debug information. Enabling this option can
provide a faster load and use less memory but debugging might be slower.

Figure 4-1  Load File dialog box

Related concepts
4.2 About loading debug information into the debugger on page 4-99.

Related tasks
2.2 Configuring a connection to a Fixed Virtual Platform (FVP) on page 2-29.
2.3 Configuring a connection to a Linux target using gdbserver on page 2-31.
2.4 Configuring a connection to a Linux Kernel on page 2-33.
2.7 Configuring a connection to a bare-metal target on page 2-43.
2.8 Configuring an Event Viewer connection to a bare-metal target on page 2-45.
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Related references
10.6 Commands view on page 10-204.
10.7 Debug Control view on page 10-207.

Related information
DS-5 Debugger commands.

4 Controlling execution
4.1 About loading an image on to the target

ARM DUI0446P Copyright © 2010-2013 ARM. All rights reserved. 4-98
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0452-/CBJFCCDC.html


4.2 About loading debug information into the debugger
 

An executable image contains symbolic references, such as function and variable names, in
addition to the application code and data. These symbolic references are generally referred to as
debug information. Without this information the debugger is unable to debug at the source level.

To debug an application at source level, the image file and shared object files must be compiled
with debug information, and a suitable level of optimization. For example, when compiling with
either the ARM or the GNU compiler you can use the following options:

-g -O0

Debug information is not loaded when a file is loaded, but is a separate action. A typical load
sequence is:

1. Load the main application image.
2. Load any shared objects.
3. Load the symbols for the main application image
4. Load the symbols for shared objects on-demand.

Images and shared objects might be preloaded onto the target, such as an image in a ROM device
or an OS-aware target. The corresponding image file and any shared object files must contain
debug information, and be accessible from your local host workstation. You can then configure a
connection to the target loading only the debug information from these files. Use the Load
symbols from file option on the debug configuration Files tab as appropriate for the target
environment.

After connecting to the target you can also use the view menu entry Load... in the Debug Control
view to load files as required. The following options for loading debug information are available:

Add Symbols File
Loads additional debug information into the debugger.

Load Debug Info
Loads debug information into the debugger.

Load Image and Debug Info
Loads the application image on to the target and debug information from the same images
into the debugger.

Load Offset
Specifies a decimal or hexadecimal offset that is added to all addresses within the image.
A hexadecimal offset must be prefixed with 0x.

Enable on-demand loading
Specifies how you want the debugger to load debug information. Enabling this option can
provide a faster load and use less memory but debugging might be slower.

4 Controlling execution
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Figure 4-2  Load additional debug information dialog box

The debug information in an image or shared object also contains the path of the sources used to
build it. When execution stops at an address in the image or shared object, the debugger attempts
to open the corresponding source file. If this path is not present or the required source file is not
found, then you must inform the debugger where the source file is located. You do this by setting
up a substitution rule to associate the path obtained from the image with the path to the required
source file that is accessible from your local host workstation.

Related concepts
4.1 About loading an image on to the target on page 4-97.

Related tasks
2.2 Configuring a connection to a Fixed Virtual Platform (FVP) on page 2-29.
2.3 Configuring a connection to a Linux target using gdbserver on page 2-31.
2.4 Configuring a connection to a Linux Kernel on page 2-33.
2.7 Configuring a connection to a bare-metal target on page 2-43.
2.8 Configuring an Event Viewer connection to a bare-metal target on page 2-45.

Related references
10.6 Commands view on page 10-204.
10.7 Debug Control view on page 10-207.
4.18 Configuring the debugger path substitution rules on page 4-126.

Related information
DS-5 Debugger commands.

4 Controlling execution
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4.3 About passing arguments to main()
 

ARM DS-5 Debugger enables you to pass arguments to the main() function of your application
with one of the following methods:

• using the Arguments tab in the Debug Configuration dialog box.
• on the command-line (or in a script), you can use either:

— set semihosting args <arguments>
— run <arguments>.

 Note 

Semihosting must be active for these to work with bare-metal images.

Related references
7.1 About semihosting and top of memory on page 7-157.
7.2 Working with semihosting on page 7-158.
7.3 Enabling automatic semihosting support in the debugger on page 7-159.
7.4 Controlling semihosting messages using the command-line console on page 7-160.
10.39 Debug Configurations - Arguments tab on page 10-280.

Related information
DS-5 Debugger commands.
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4.4 Running an image
Describes how to run an application image so that you can monitor how it executes on a target.

Use the Debug Configurations dialog box to set up a connection and define the run control options
that you want the debugger to do after connection. To do this select Debug Configurations...
from the Run menu.

After connection, you can control the debug session by using the toolbar icons in the Debug
Control view.

Prerequisites 

Before you can run an image it must be loaded onto the target. An image can either be preloaded
on a target or loaded onto the target as part of the debug session.

 Note 

The files that resides on the target do not have to contain debug information, however, to be able
to debug them you must have the corresponding files with debug information on your local host
workstation.

Related references
10.6 Commands view on page 10-204.
10.7 Debug Control view on page 10-207.
10.35 Debug Configurations - Connection tab on page 10-269.
10.36 Debug Configurations - Files tab on page 10-272.
10.37 Debug Configurations - Debugger tab on page 10-276.
10.39 Debug Configurations - Arguments tab on page 10-280.
10.40 Debug Configurations - Environment tab on page 10-282.
Debug Configurations - Event Viewer tab.

Related information
DS-5 Debugger commands.
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4.5 About breakpoints and watchpoints
 

Breakpoints and watchpoints enable you to stop the target when certain events occur, and when
certain conditions are met. When execution stops you can then choose to examine the contents of
memory, registers, or variables, or you might have specified other actions to be taken before
execution resumes.

The debugger provides the following types:

Breakpoints
A breakpoint enables you to interrupt your application when execution reaches a specific
address. A breakpoint is always related to a particular memory address, regardless of
what might be stored there. When execution reaches the breakpoint, normal execution
stops before any instruction stored there is performed.

You can set:

• software breakpoints that trigger when a particular instruction is executed at a specific
address

• hardware breakpoints that trigger when the processor attempts to execute an
instruction that is fetched from a specific memory address

• conditional breakpoints that trigger when an expression evaluates to true or when an
ignore counter is reached

• temporary software or hardware breakpoints that are subsequently deleted when the
breakpoint is hit.

The type of breakpoints you can set depends on the:

• memory region and the related access attributes
• hardware support provided by your target processor
• debug interface used to maintain the target connection
• running state if you are debugging an OS-aware application.

Watchpoints
A watchpoint is similar to a breakpoint, but it is the address or value of a data access that
is monitored rather than an instruction being executed from a specific address. You
specify a register or a memory address to identify a location that is to have its contents
tested. Watchpoints are sometimes known as data breakpoints, emphasizing that they are
data dependent. Execution of your application stops when the address being monitored is
accessed by your application.

You can set:

• watchpoints that trigger when a particular memory location is accessed in a particular
way

• conditional watchpoints that trigger when an expression evaluates to true or when an
ignore counter is reached.

Considerations when setting breakpoints and watchpoints

Be aware of the following when setting breakpoints and watchpoints:

• The number of hardware breakpoints available depends on the target.
• If an image is compiled with a high optimization level or perhaps contains C++ templates then

the effect of setting a breakpoint in the source code depends on where you set the breakpoint.
For example, if you set a breakpoint on an inlined function or a C++ template, then a
breakpoint is created for each instance of that function or template. Therefore the target can
run out of breakpoint resources.
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• Enabling a Memory Management Unit (MMU) might set a memory region to read-only. If that
memory region contains a software breakpoint, then that software breakpoint cannot be
removed. Therefore, make sure you clear software breakpoints before enabling the MMU.

• Watchpoints are only supported on global/static data symbols because they are always in
scope. Local variables are not available when you step out of a function.

• Some targets do not support watchpoints. Currently you can only use watchpoint commands
on a hardware target using a debug hardware adapter.

• The address of the instruction that triggers the watchpoint might not be the address shown in
the PC register. This is because of pipelining effects in the processor.

• When debugging an application that uses shared objects, breakpoints that are set within a
shared object are re-evaluated when the shared object is unloaded. Those with addresses that
can be resolved are set and the others remain pending.

• If a breakpoint is set by function name then only inline instances that have been already
demand loaded are found. To find all the inline instances of a function you must disable on-
demand loading.

Related references
4.6 Setting an execution breakpoint on page 4-105.
4.7 Working with data watchpoints on page 4-107.
4.8 Setting a tracepoint on page 4-109.
4.9 Setting Streamline start and stop points on page 4-110.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.12 Pending breakpoints and watchpoints on page 4-117.
4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.

Related information
DS-5 Debugger commands.
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4.6 Setting an execution breakpoint
 

The debugger enables you to set software or hardware breakpoints, depending on your target
memory type. Software breakpoints are implemented by the debugger replacing the instruction at
the breakpoint address with a special instruction opcode. Because the debugger requires write
access to application memory, software breakpoints can only be set in RAM. Hardware
breakpoints are implemented by EmbeddedICE® logic that monitors the address and data buses of
your processor. For simulated targets, hardware breakpoints are implemented by your simulator
software.

To set an execution breakpoint double-click in the left-hand marker bar of the C/C++ editor or the
Disassembly view at the position where you want to set the breakpoint. To delete a breakpoint,
double-click on the breakpoint marker.

The following figure shows an example of breakpoints, in the C/C++ editor and in the
Disassembly view. These are also visible in the Breakpoints view.

Figure 4-3  Setting an execution breakpoint

Related references
4.5 About breakpoints and watchpoints on page 4-103.
4.7 Working with data watchpoints on page 4-107.
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4.8 Setting a tracepoint on page 4-109.
4.9 Setting Streamline start and stop points on page 4-110.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.12 Pending breakpoints and watchpoints on page 4-117.
4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
10.3 ARM assembler editor on page 10-194.
10.4 Breakpoints view on page 10-197.
10.5 C/C++ editor on page 10-201.
10.6 Commands view on page 10-204.
10.8 Disassembly view on page 10-211.
10.10 Expressions view on page 10-216.
10.13 Memory view on page 10-223.
10.15 Registers view on page 10-231.
10.22 Variables view on page 10-248.

Related information
DS-5 Debugger commands.
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4.7 Working with data watchpoints
Like breakpoints, watchpoints can be used to stop the target. Watchpoints stop the target when a
particular variable is accessed no matter which function is executing.

A watchpoint can stop the target when the variable is read, or when it is written, or both.
Watchpoints can only be set on variables that are stored in memory or on a particular memory
location.

 Note 

• Depending on the target, it is possible that a few additional instructions, after the instruction
that accessed the variable, may also be executed.

• Watchpoints are only supported on scalar values.
• The number of watchpoints that can be set at the same time depends on the target and the

debug connection being used. Some targets do not support watchpoints.

Setting a data watchpoint

To set a data watchpoint, in the Variables view:

1. Right-click on a data symbol and select Toggle Watchpoint to display the Add Watchpoint
dialog.

Figure 4-4  Setting a data watchpoint
2. Select the required Access Type, and then click OK.

You can view the created watchpoint in the Variables view and also in the Breakpoints view.

Viewing the properties of a data watchpoint

To view the properties of a data watchpoint, either:

• In the Variables view, right-click a watchpoint and select Watchpoint Properties.

• In the Breakpoints view, right-click a watchpoint and select Properties....

This displays the Watchpoint Properties dialog:
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If the target supports virtualization, you can use the Break on Virtual Machine ID field to specify a
virtual machine ID. This allows the watchpoint to stop only at the virtual machine ID you specify.

Figure 4-5  Viewing the properties of a data watchpoint

Removing a data watchpoint

To remove a data watchpoint, in the Variables view, right-click a watchpoint and select Toggle
Watchpoint.

Related references
4.5 About breakpoints and watchpoints on page 4-103.
4.6 Setting an execution breakpoint on page 4-105.
4.8 Setting a tracepoint on page 4-109.
4.9 Setting Streamline start and stop points on page 4-110.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.12 Pending breakpoints and watchpoints on page 4-117.
4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
10.3 ARM assembler editor on page 10-194.
10.4 Breakpoints view on page 10-197.
10.5 C/C++ editor on page 10-201.
10.6 Commands view on page 10-204.
10.8 Disassembly view on page 10-211.
10.10 Expressions view on page 10-216.
10.13 Memory view on page 10-223.
10.15 Registers view on page 10-231.
10.22 Variables view on page 10-248.

Related information
DS-5 Debugger commands.
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4.8 Setting a tracepoint
 

Tracepoints are memory locations that are used to trigger behavior in a trace capture device when
running an application. A tracepoint is hit when the processor executes an instruction at a specific
address. Depending on the type, trace capture is either enabled or disabled.

Tracepoints can be set from the following:

• ARM Assembler editor.
• C/C++ editor.
• Disassembly view.
• Functions view.
• Memory view.
• Disassembly panel of the Trace view.

To set a tracepoint, right-click in the left-hand marker bar at the position where you want to set the
tracepoint and select either Toggle Trace Start Point, Toggle Trace Stop Point, or Toggle
Trace Trigger Point from the context menu. To remove a tracepoint, repeat this procedure on the
same tracepoint or delete it from the Breakpoints view.

Tracepoints are stored on a per connection basis. If the active connection is disconnected then
tracepoints can only be created from the source editor.

All tracepoints are visible in the Breakpoints view.

Related references
4.5 About breakpoints and watchpoints on page 4-103.
4.6 Setting an execution breakpoint on page 4-105.
4.7 Working with data watchpoints on page 4-107.
4.9 Setting Streamline start and stop points on page 4-110.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.12 Pending breakpoints and watchpoints on page 4-117.
4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
10.3 ARM assembler editor on page 10-194.
10.4 Breakpoints view on page 10-197.
10.5 C/C++ editor on page 10-201.
10.6 Commands view on page 10-204.
10.8 Disassembly view on page 10-211.
10.10 Expressions view on page 10-216.
10.13 Memory view on page 10-223.
10.15 Registers view on page 10-231.
10.22 Variables view on page 10-248.

Related information
DS-5 Debugger commands.
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4.9 Setting Streamline start and stop points
 

Streamline start and stop points are locations in source or assembly code that are used to enable or
disable Streamline capture in a running application. A Streamline start and stop point is hit when
the processor executes an instruction at a specific address.

Streamline start and stop points can be set from the following views:

• ARM Assembler editor.
• C/C++ editor.

To set a Streamline start and stop point, right-click in the left-hand marker bar at the position
where you want to set the start and stop point and select either Toggle Streamline Start or
Toggle Streamline Stop from the DS-5 Breakpoints context menu. To remove a start and stop
point, repeat this procedure on the same start and stop point.

Related references
4.5 About breakpoints and watchpoints on page 4-103.
4.6 Setting an execution breakpoint on page 4-105.
4.7 Working with data watchpoints on page 4-107.
4.8 Setting a tracepoint on page 4-109.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.12 Pending breakpoints and watchpoints on page 4-117.
4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
10.3 ARM assembler editor on page 10-194.
10.5 C/C++ editor on page 10-201.

Related information
DS-5 Debugger commands.
Using ARM Streamline.
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4.10 Setting a conditional breakpoint
 

Conditional breakpoints have properties assigned to test for conditions that must be satisfied to
trigger the breakpoint. For example, you can:

• Test a variable for a given value.
• Execute a function a set number of times.
• Trigger a breakpoint only on a specific thread or processor.

Conditional breakpoints can be very intrusive and lower the performance if they are hit frequently.
This is because the debugger stops the target every time the breakpoint triggers. The specified
condition is checked and if it evaluates to true then the target remains in the stopped state,
otherwise execution resumes.

 Note 

You must not assign a script to a breakpoint that has sub-breakpoints. If you do, the debugger
attempts to execute the script for each sub-breakpoint. If this happens, an error message is
displayed.

You can assign conditions to an existing breakpoint in the Breakpoint Properties dialog box:

1. In the Breakpoints view, right-click on the breakpoint that you want modify to display the
context menu.

2. Select Properties... to display the Breakpoint Properties dialog box.
3. If you want to set a conditional expression for a specific breakpoint then enter a C-style

expression in the Stop Condition field. For example, if your application has a variable x, then
you can specify:x == 10

4. If you want the debugger to delay hitting the breakpoint until a specific number of passes has
occurred, then enter the number of passes in the Ignore Count field. For example, if you have
a loop that performs 100 iterations, and you want a breakpoint in that loop to be hit after 50
passes, then enter 50.

5. If you want to run a script when the selected breakpoint is triggered then specify the script file
in the On break, run script field:

• Enter the location and file name in the field provided.
• Click on File System... to locate the file in an external directory from the workspace.
• Click on Workspace... to locate the file in a project directory or sub-directory within the

workspace.

 Note 

Take care with the commands used in a script file that is attached to a breakpoint. For example,
if the script file contains the quit command, the debugger disconnects from the target when
the breakpoint is hit.

6. If you want to enable the debugger to automatically continue running the application on
completion of all the breakpoint actions then select the Continue Execution checkbox.

Alternatively you can enter the continue command as the last command in a script file, that
is attached to a breakpoint.

7. If you want to set a breakpoint in one or more threads or processors:

a. Select Break on Selected Threads or Cores to enable the selection panel.
b. Select the checkbox for each thread or processor that you want to assign the breakpoint to.

8. Click OK to save the changes.
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Figure 4-6  Setting a conditional breakpoint

Breakpoints that are set on a single line of source code with multiple statements are assigned as
sub-breakpoints to a parent breakpoint. You can enable, disable, and view the properties of each
sub-breakpoint in the same way as a single statement breakpoint. Conditions are assigned to top
level breakpoints only and therefore affect both the parent breakpoint and sub-breakpoints.

Considerations when setting multiple conditions on a breakpoint

Be aware of the following when setting multiple conditions on a breakpoint:
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• If you set a Stop Condition and an Ignore Count, then the Ignore Count is not decremented
until the Stop Condition is met. For example, you might have a breakpoint in a loop that is
controlled by the variable c and has 10 iterations .If you set the Stop Condition c==5 and the
Ignore Count to 3, then the breakpoint might not activate until it has been hit with c==5 for the
fourth time. It subsequently activates every time it is hit with c==5.

• If you choose to break on selected thread or processor, then the Stop Condition and Ignore
Count are checked only for the selected thread or processor.

• Conditions are evaluated in the following order:

1. thread or processor
2. condition
3. ignore count.

Related references
4.5 About breakpoints and watchpoints on page 4-103.
4.6 Setting an execution breakpoint on page 4-105.
4.7 Working with data watchpoints on page 4-107.
4.8 Setting a tracepoint on page 4-109.
4.9 Setting Streamline start and stop points on page 4-110.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.12 Pending breakpoints and watchpoints on page 4-117.
4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
10.3 ARM assembler editor on page 10-194.
10.4 Breakpoints view on page 10-197.
10.5 C/C++ editor on page 10-201.
10.6 Commands view on page 10-204.
10.8 Disassembly view on page 10-211.
10.10 Expressions view on page 10-216.
10.13 Memory view on page 10-223.
10.15 Registers view on page 10-231.
10.22 Variables view on page 10-248.

Related information
DS-5 Debugger commands.
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4.11 Setting a breakpoint on a specific thread
 

Breakpoints apply to all threads by default, but you can modify the properties for a breakpoint to
restrict it to a specific thread:

1. In the Breakpoints view, right-click on the breakpoint that you want modify to display the
context menu.

2. Select Properties... to display the Breakpoint Properties dialog box.
3. Assign breakpoint conditions as required.
4. Select the Break on Selected Threads checkbox to enable thread selection.
5. Select the checkbox for each thread that you want to assign the breakpoint to.
6. Click OK to save the changes.

 Note 

If you set a breakpoint for a specific thread, then any conditions you set for the breakpoint are
checked only for that thread.
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Figure 4-7  Setting a breakpoint on a specific thread

Related references
4.5 About breakpoints and watchpoints on page 4-103.
4.6 Setting an execution breakpoint on page 4-105.
4.7 Working with data watchpoints on page 4-107.
4.8 Setting a tracepoint on page 4-109.
4.9 Setting Streamline start and stop points on page 4-110.
4.10 Setting a conditional breakpoint on page 4-111.
4.12 Pending breakpoints and watchpoints on page 4-117.
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4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
10.3 ARM assembler editor on page 10-194.
10.4 Breakpoints view on page 10-197.
10.5 C/C++ editor on page 10-201.
10.6 Commands view on page 10-204.
10.8 Disassembly view on page 10-211.
10.10 Expressions view on page 10-216.
10.13 Memory view on page 10-223.
10.15 Registers view on page 10-231.
10.22 Variables view on page 10-248.

Related information
DS-5 Debugger commands.
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4.12 Pending breakpoints and watchpoints
 

Breakpoints and watchpoints can be set when debug information is available. Pending breakpoints
and watchpoints however, enable you to set breakpoints and watchpoints before the associated
debug information is available.

The debugger automatically re-evaluates all pending breakpoints and watchpoints when debug
information changes. Those with addresses that can be resolved are set and the others remain
pending.

In the Breakpoints view you can force the resolution of a pending breakpoint or watchpoint. For
example, this might be useful if you have manually modified the shared library search paths. To
do this:

1. Right-click on the pending breakpoint or watchpoint that you want to resolve.
2. Click on Resolve to attempt to find the address and set the breakpoint or watchpoint.

Examples 

To manually set a pendable breakpoint or watchpoint you can use the -p option with any of these
commands, advance, awatch, break, hbreak, rwatch, tbreak, thbreak, and watch. You
can enter debugger commands in the Commands view.

break -p lib.c:20         # Sets a pending breakpoint at line 20 in lib.c
awatch -p *0x80D4         # Sets a pending read/write watchpoint on address 0x80D4

Related references
4.5 About breakpoints and watchpoints on page 4-103.
4.6 Setting an execution breakpoint on page 4-105.
4.7 Working with data watchpoints on page 4-107.
4.8 Setting a tracepoint on page 4-109.
4.9 Setting Streamline start and stop points on page 4-110.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
10.3 ARM assembler editor on page 10-194.
10.4 Breakpoints view on page 10-197.
10.5 C/C++ editor on page 10-201.
10.6 Commands view on page 10-204.
10.8 Disassembly view on page 10-211.
10.10 Expressions view on page 10-216.
10.13 Memory view on page 10-223.
10.15 Registers view on page 10-231.
10.22 Variables view on page 10-248.

Related information
DS-5 Debugger commands.
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4.13 Exporting DS-5 breakpoint settings to a file
 

To export DS-5 breakpoint settings to a file:

1. Ensure that you are in the DS-5 Debug perspective.
2. Select Export Breakpoints from the Breakpoints view menu.
3. Select the required location in the local file system and enter a filename.
4. Click Save.

 Note 

All breakpoints and watchpoints shown in the DS-5 Breakpoints view are saved.

Related references
4.5 About breakpoints and watchpoints on page 4-103.
4.6 Setting an execution breakpoint on page 4-105.
4.7 Working with data watchpoints on page 4-107.
4.8 Setting a tracepoint on page 4-109.
4.9 Setting Streamline start and stop points on page 4-110.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.12 Pending breakpoints and watchpoints on page 4-117.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
10.3 ARM assembler editor on page 10-194.
10.4 Breakpoints view on page 10-197.
10.5 C/C++ editor on page 10-201.
10.6 Commands view on page 10-204.
10.8 Disassembly view on page 10-211.
10.10 Expressions view on page 10-216.
10.13 Memory view on page 10-223.
10.15 Registers view on page 10-231.
10.22 Variables view on page 10-248.

Related information
DS-5 Debugger commands.
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4.14 Importing DS-5 breakpoint settings from a file
 

To import DS-5 breakpoint settings from a file:

1. Ensure that you are in the DS-5 Debug perspective.
2. Select Import Breakpoints from the Breakpoints view menu.
3. Select the file containing the breakpoint settings from the local file system.
4. Click Open.

 Note 

Existing settings for the current connection are deleted and replaced by the DS-5 breakpoint and
watchpoint settings from the imported file.

Related references
4.5 About breakpoints and watchpoints on page 4-103.
4.6 Setting an execution breakpoint on page 4-105.
4.7 Working with data watchpoints on page 4-107.
4.8 Setting a tracepoint on page 4-109.
4.9 Setting Streamline start and stop points on page 4-110.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.12 Pending breakpoints and watchpoints on page 4-117.
4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
10.3 ARM assembler editor on page 10-194.
10.4 Breakpoints view on page 10-197.
10.5 C/C++ editor on page 10-201.
10.6 Commands view on page 10-204.
10.8 Disassembly view on page 10-211.
10.10 Expressions view on page 10-216.
10.13 Memory view on page 10-223.
10.15 Registers view on page 10-231.
10.22 Variables view on page 10-248.

Related information
DS-5 Debugger commands.
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4.15 Stepping through an application
 

The debugger enables you to finely control the execution of an image by sequentially stepping
through an application at the source level or the instruction level.

 Note 

You must compile your code with debug information to use the source level stepping commands.
By default, source level calls to functions with no debug information are stepped over. Use the
set step-mode command to change the default setting.

There are several ways to step through an application. You can choose to step:

• Into or over all function calls.
• At source level or instruction level.
• Through multiple statements in a single line of source code, for example a for loop.

Be aware that when stepping at the source level, the debugger uses temporary breakpoints to stop
execution at the specified location. These temporary breakpoints might require the use of
hardware breakpoints, especially when stepping through code in ROM or Flash. If there are not
enough hardware breakpoint resources available, then the debugger displays an error message.

You can use the stepping toolbar in the Debug Control view to step through the application either
by source line or instruction.

Figure 4-8  Debug Control view

Examples 

To step a specified number of times you must use the Commands view to manually execute one
of the stepping commands with a number. For example:

steps 5                            # Execute five source statements
stepi 5                            # Execute five instructions
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Related concepts
6.8 About debugging shared libraries on page 6-144.
6.9 About debugging a Linux kernel on page 6-146.
6.10 About debugging Linux kernel modules on page 6-148.

Related references
5.1 Examining the target execution environment on page 5-129.
5.2 Examining the call stack on page 5-131.
4.16 Handling Unix signals on page 4-122.
4.17 Handling processor exceptions on page 4-124.
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4.16 Handling Unix signals
 

For Linux applications, ARM processors have the facility to trap Unix signals. These are managed
in the debugger by selecting Manage Signals from the Breakpoints view menu or you can use
the handle command. You can also use the info signals command to display the current
handler settings.

The default handler settings are dependent on the type of debug activity. For example, by default
on a Linux kernel connection, all signals are handled by Linux on the target.

Figure 4-9  Managing signal handler settings

 Note 

Unix signals SIGINT and SIGTRAP cannot be debugged in the same way as other signals because
they are used internally by the debugger for asynchronous stopping of the process and breakpoints
respectively.

Examples 

If you want the application to ignore a signal but log the event when it is triggered then you must
enable stopping on a signal. In the following example, a SIGHUP signal occurs causing the
debugger to stop and print a message. No signal handler is invoked when using this setting and the
application being debugged ignores the signal and continues.
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Ignoring a SIGHUP signal

handle SIGHUP stop print                # Enable stop and print on SIGHUP 
signal

The following example shows how to debug a signal handler. To do this you must disable
stopping on a signal and then set a breakpoint in the signal handler. This is because if stopping on
a signal is disabled then the handling of that signal is performed by the process that passes signal
to the registered handler. If no handler is registered then the default handler runs and the
application generally exits.

Debugging a SIGHUP signal

handle SIGHUP nostop noprint             # Disable stop and print on SIGHUP 
signal

Related concepts
6.8 About debugging shared libraries on page 6-144.
6.9 About debugging a Linux kernel on page 6-146.
6.10 About debugging Linux kernel modules on page 6-148.

Related references
4.15 Stepping through an application on page 4-120.
5.1 Examining the target execution environment on page 5-129.
5.2 Examining the call stack on page 5-131.
4.17 Handling processor exceptions on page 4-124.
10.4 Breakpoints view on page 10-197.
10.6 Commands view on page 10-204.
10.31 Manage Signals dialog box on page 10-264.

Related information
DS-5 Debugger commands.
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4.17 Handling processor exceptions
 

ARM processors handle exceptional events by jumping to one of a set of fixed addresses known
as exception vectors. Except for a Supervisor Call (SVC), these events are not part of normal
program flow and can happen unexpectedly because of a software bug. For this reason most ARM
processors include a vector catch feature to trap these exceptions. This is most useful for bare-
metal projects, or projects at an early stage of development. When an OS is running it might use
these exceptions for legitimate purposes, for example virtual memory.

When vector catch is enabled, the effect is similar to placing a breakpoint on the selected vector
table entry, except that vector catches use dedicated hardware in the processor and do not use up
valuable breakpoint resources. To manage vector catch in the debugger either select Manage
Signals from the Breakpoints view menu or use the handle command. You can also use the
info signals command to display the current handler settings.

The vector catch events that are available are dependent on the exact processor that you are
connected to.

Figure 4-10  Manage exception handler settings

Examples 

If you want the debugger to catch the exception, log the event, and stop the application when the
exception occurs then you must enable stopping on an exception. In the following example, a
NON-SECURE_FIQ exception occurs causing the debugger to stop and print a message. You can
then step or run to the handler, if present.

Debugging an exception handler

handle NON-SECURE_FIQ stop        # Enable stop and print on a NON-SECURE_FIQ 
exception

If you want the exception to invoke the handler without stopping then you must disable stopping
on an exception.

Ignoring an exception

handle NON-SECURE_FIQ nostop      # Disable stop on a NON-SECURE_FIQ exception
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Related concepts
6.8 About debugging shared libraries on page 6-144.
6.9 About debugging a Linux kernel on page 6-146.
6.10 About debugging Linux kernel modules on page 6-148.

Related references
4.15 Stepping through an application on page 4-120.
5.1 Examining the target execution environment on page 5-129.
5.2 Examining the call stack on page 5-131.
4.16 Handling Unix signals on page 4-122.
10.4 Breakpoints view on page 10-197.
10.6 Commands view on page 10-204.
10.31 Manage Signals dialog box on page 10-264.

Related information
DS-5 Debugger commands.
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4.18 Configuring the debugger path substitution rules
 

The debugger might not be able to locate the source file when debug information is loaded
because:

• The path specified in the debug information is not present on your workstation, or that path
does not contain the required source file.

• The source file is not in the same location on your workstation as the image containing the
debug information. The debugger attempts to use the same path as this image by default.

Therefore, you must modify the search paths used by the debugger when it executes any of the
commands that look up and display source code.

To modify the search paths:

1. Open the Path Substitution dialog box:

• If a source file cannot be located, a warning is displayed in the C/C++ editor. Click on Set
Path Substitution.

• In the Debug Control view, select Path Substitution from the view menu.

Figure 4-11  Path Substitution dialog box
2. Click on the toolbar icons in the Path Substitution dialog box to add, edit, or duplicate

substitution rules:

a. Enter the original path for the source files in the Image Path field or click on Select... to
select from the compilation paths.

b. Enter the current location of the source files in the Host Path field or click on:

• File System... to locate the source files in an external folder.
• Workspace... to locate the source files in a workspace project.
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c. Click OK.

Figure 4-12  Edit Substitute Path dialog box
3. If required, you can use the toolbar icons in the Path Substitution dialog box to change the

order of the substitution rules or delete rules that are no longer required.
4. Click OK to pass the substitution rules to the debugger and close the dialog box.

Related concepts
4.2 About loading debug information into the debugger on page 4-99.
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Chapter 5
Examining the target

Describes how to examining registers, variables, memory, and the call stack.
It contains the following:

• 5.1 Examining the target execution environment on page 5-129.
• 5.2 Examining the call stack on page 5-131.
• 5.3 About trace support on page 5-132.
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5.1 Examining the target execution environment
 

During a debug session you might want to display , the value of a register or variable, the address
of a symbol, the data type of a variable, or the content of memory.

The DS-5 Debug perspective provides the essential debugger views showing the current values.
All the views are associated with the active connection and are updated as you step through the
application. You can move any of the views to a different position in the perspective by clicking
on the tab and dragging to a new position. You can also double-click on a tab to maximize or reset
a view for closer analysis of the view content.

Figure 5-1  Examine the target execution

Alternatively you can use debugger commands to display the required information. In the
Commands view you can execute individual commands or you can execute a sequence of
commands by using a script file.

Related concepts
6.8 About debugging shared libraries on page 6-144.
6.9 About debugging a Linux kernel on page 6-146.
6.10 About debugging Linux kernel modules on page 6-148.
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Related references
4.15 Stepping through an application on page 4-120.
5.2 Examining the call stack on page 5-131.
4.16 Handling Unix signals on page 4-122.
4.17 Handling processor exceptions on page 4-124.
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5.2 Examining the call stack
 

The call stack, or runtime stack, is an area of memory used to store function return information
and local variables. As each function is called, a record is created on the call stack. This record is
commonly known as a stack frame.

The debugger can display the calling sequence of any functions that are still in the execution path
because their calling addresses are still on the call stack. However:

• When a function completes execution the associated stack frame is removed from the call
stack and the information is no longer available to the debugger.

• If the call stack contains a function for which there is no debug information, the debugger
might not be able to trace back up the calling stack frames. Therefore you must compile all
your code with debug information to successfully view the full call stack.

If you are debugging multi-threaded applications, a separate call stack is maintained for each
thread.

All the views in the DS-5 Debug perspective are associated with the current stack frame and are
updated when you select another frame. The current stack frame is shown in bold text.

Figure 5-2  Debug Control view

Related concepts
6.8 About debugging shared libraries on page 6-144.
6.9 About debugging a Linux kernel on page 6-146.
6.10 About debugging Linux kernel modules on page 6-148.

Related references
4.15 Stepping through an application on page 4-120.
5.1 Examining the target execution environment on page 5-129.
4.16 Handling Unix signals on page 4-122.
4.17 Handling processor exceptions on page 4-124.
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5.3 About trace support
 

ARM DS-5 enables you to perform tracing on your application or system. Tracing is the ability to
capture in real-time a historical, non-invasive debug of instructions and data accesses. It is a
powerful tool that enables you to investigate problems while the system runs at full speed. These
problems can be intermittent, and are difficult to identify through traditional debugging methods
that require starting and stopping the processor. Tracing is also useful when trying to identify
potential bottlenecks or to improve performance-critical areas of your application.

Before the debugger can trace function executions in your application you must ensure that:

• you have a debug hardware agent, such as an ARM DSTREAM \VSTREAM unit with a
connection to a trace stream

• the debugger is connected to the debug hardware agent.

Trace hardware

Trace is typically provided by an external hardware block connected to the processor. This is
known as an Embedded Trace Macrocell (ETM) or Program Trace Macrocell (PTM) and is an
optional part of an ARM architecture-based system. System-on-chip designers might omit this
block from their silicon to reduce costs. These blocks observe (but do not affect) the processor
behavior and are able to monitor instruction execution and data accesses.

There are two main problems with capturing trace. The first is that with very high processor clock
speeds, even a few seconds of operation can mean billions of cycles of execution. Clearly, to look
at this volume of information would be extremely difficult. The second, related problem is that
modern processors could potentially perform one or more 64-bit cache accesses per cycle and to
record both the data address and data values might require large bandwidth. This presents a
problem in that typically, only a few pins are provided on the chip and these outputs might be able
to be switched at significantly lower rates than the processor can be clocked at. It is very easy to
exceed the capacity of the trace port. To solve this latter problem, the trace macrocell tries to
compress information to reduce the bandwidth required. However, the main method to deal with
these issues is to control the trace block so that only selected trace information is gathered. For
example, trace only execution, without recording data values, or trace only data accesses to a
particular peripheral or during execution of a particular function.

In addition, it is common to store trace information in an on-chip memory buffer, the Embedded
Trace Buffer (ETB). This alleviates the problem of getting information off-chip at speed, but has
an additional cost in terms of silicon area and also provides a fixed limit on the amount of trace
that can be captured.

The ETB stores the compressed trace information in a circular fashion, continuously capturing
trace information until stopped. The size of the ETB varies between chip implementations, but a
buffer of 8 or 16kB is typically enough to hold a few thousand lines of program trace.

When a program fails, and the trace buffer is enabled, you can see a portion of program history.
With this program history, it is easier to walk back through your program to see what happened
just before the point of failure. This is particularly useful for investigating intermittent and real-
time failures, which can be difficult to identify through traditional debug methods that require
stopping and starting the processor. The use of hardware tracing can significantly reduce the
amount of time required to find these failures, because the trace shows exactly what was executed.

Trace Ranges

Trace ranges enable you to restrict the capture of trace to a linear range of memory. A trace range
has a start and end address in virtual memory, and any execution within this address range is
captured. In contrast to trace start and end points, any function calls made within a trace range are
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only captured if the target of the function call is also within the specified address range. The
number of trace ranges that can be enabled is determined by the debug hardware in your
processor.

Trace capture is enabled by default when no trace ranges are set. Trace capture is disabled by
default when any trace ranges are set, and is only enabled when within the defined ranges.

You can configure trace ranges using the Ranges tab in the Trace view. The start and end address
for each range can either be an absolute address or an expression, such as the name of a function.
Be aware that optimizing compilers might rearrange or minimize code in memory from that in the
associated source code. This can lead to code being unexpectedly included or excluded from the
trace capture.

Trace Points

Trace points enable you to control precisely where in your program trace is captured. Trace points
are non-intrusive and do not require stopping the system to process. The maximum number of
trace points that can be set is determined by the debug hardware in your processor. The following
types of trace points are available:To set trace points in the source view, right-click in the margin
and select the required option from the DS-5 Breakpoints context menu. To set trace points in the
Disassembly view, right-click on an instruction and select the required option from the DS-5
Breakpoints context menu. Trace points are listed in the Breakpoints view.

Trace Start Point
Enables trace capture when execution reaches the selected address.

Trace Stop Point
Disables trace capture when execution reaches the selected address

Trace Trigger Point
Marks this point in the trace so that you can more easily locate it in the Trace view.

Trace Start Points and Trace Stop Points enable and disable capture of trace respectively. Trace
points do not take account of nesting. For example, if you hit two Trace Start Points in a row,
followed by two Trace Stop Points, then the trace is disabled immediately when the first Trace
Stop Point is reached, not the second. With no Trace Start Points set then trace is enabled all the
time by default. If you have any Trace Start Points set, then trace is disabled by default and is only
enabled when the first Trace Start Point is hit.

Trace trigger points enable you to mark interesting locations in the trace so that you can easily
find them later in the Trace view. The first time a Trigger Point is hit a Trace Trigger Event record
is inserted into the trace buffer. Only the first Trigger Point to be hit inserts the trigger event
record. To configure the debugger so that it stops collecting trace when a trace trigger point is hit,
use the Stop Trace Capture On Trigger checkbox in the Properties tab of the Trace view.

 Note 

This does not stop the target. It only stops the trace capture. The target continues running normally
until it hits a breakpoint or until you click the Interrupt icon in the Debug Control view.

When this is set you can configure the amount of trace that is captured before and after a trace
trigger point using the Post-Trigger Capture Size field in the Properties tab of the Trace view. If
you set this field to:

0%
The trace capture stops as soon as possible after the first trigger point is hit. The trigger
event record can be found towards the end of the trace buffer.

50%
The trace capture stops after the first trigger point is hit and an additional 50% of the
buffer is filled. The trigger event record can be found towards the middle of the trace
buffer.
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99%
The trace capture stops after the first trigger point is hit and an additional 99% of the
buffer is filled. The trigger event record can be found towards the beginning of the trace
buffer.

 Note 

Due to target timing constraints the trigger event record might get pushed out of the trace
buffer.

Being able to limit trace capture to the precise areas of interest is especially helpful when using a
capture device such as an ETB, where the quantity of trace that can be captured is very small.

Select the Find Trigger Event record option in the view menu to locate Trigger Event record in
the trace buffer.

 Note 

Trace trigger functionality is dependent on the target platform being able to signal to the trace
capture hardware, such as ETB or VSTREAM, that a trigger condition has occurred. If this
hardware signal is not present or not configured correctly then it might not be possible to
automatically stop trace capture around trigger points.
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Chapter 6
Debugging embedded systems

Gives an introduction to debugging embedded systems.
It contains the following:

• 6.1 About endianness on page 6-136.
• 6.2 About accessing AHB, APB, and AXI buses on page 6-137.
• 6.3 About virtual and physical memory on page 6-138.
• 6.4 About debugging hypervisors on page 6-139.
• 6.5 About debugging big.LITTLE systems on page 6-140.
• 6.6 About debugging bare-metal symmetric multiprocessing systems on page 6-141.
• 6.7 About debugging multi-threaded applications on page 6-143.
• 6.8 About debugging shared libraries on page 6-144.
• 6.9 About debugging a Linux kernel on page 6-146.
• 6.10 About debugging Linux kernel modules on page 6-148.
• 6.11 About debugging FreeRTOS ™ on page 6-150.
• 6.12 About debugging TrustZone enabled targets on page 6-151.
• 6.13 About debugging a Unified Extensible Firmware Interface (UEFI) on page 6-153.
• 6.14 About application rewind on page 6-154.
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6.1 About endianness
 

The term endianness is used to describe the ordering of individually addressable quantities, which
means bytes and halfwords in the ARM architecture. The term byte-ordering can also be used
rather than endian.

If an image is loaded to the target on connection, the debugger automatically selects the
endianness of the image otherwise it selects the current endianness of the target. If the debugger
detects a conflict then a warning message is generated.

You can use the set endian command to modify the default debugger setting.

Related information
DS-5 Debugger commands.
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6.2 About accessing AHB, APB, and AXI buses
 

ARM-based systems connect the processors, memories and peripherals using buses. Examples of
common bus types include AMBA High-performance Bus (AHB), Advanced Peripheral Bus
(APB), and Advanced eXtensible Interface (AXI).

In some systems these buses are accessible from the debug interface. Where this is the case then
DS-5 Debugger provides access to these buses when performing bare-metal or kernel debugging.
Buses are exposed within the debugger as additional address spaces. Accesses to these buses are
available when the processor is running.

Within a debug session in DS-5 Debugger you can discover which buses are available using the
info memory command. The address and description columns in the output of this command
explain what each address space represents and how the debugger accesses it.

You can use AHB:, APB:, and AXI: address prefixes for these buses anywhere in the debugger
where you normally enter an address or expression. For example, assuming that the debugger
provides an APB address space, then you can print the contents of address zero using the
following command:

x/1 APB:0x0

The exact topology of the buses and their connection to the debug interface is dependent on your
system. See the CoreSight specifications for your hardware for more information. Typically, the
debug access to these buses bypass the processor, and so does not take into account memory
mappings or caches within the processor itself. It is implementation dependent on whether access
to the buses occur before or after any other caches in the system, such as L2 or L3 caches. The
debugger does not attempt to achieve coherency between caches in your system when accessing
these buses and it is your responsibility to take this into account and manually perform any clean
or flush operations as required.

For example, to achieve cache coherency when debugging an image with the processors level 1
cache enabled, you must clean and invalidate portions of the L1 cache prior to modifying any of
your application code or data using the AHB address space. This ensures that any existing changes
in the cache are written out to memory before writing to that address space, and that the processor
correctly reads your modification when execution resumes.

The behavior when accessing unallocated addresses is undefined, and depending on your system
can lead to locking up the buses. It is recommended that you only access those specific addresses
that are defined in your system. You can use the memory command to redefine the memory
regions within the debugger and modifying access rights to control the addresses. You can use the
x command with the count option to limit the amount of memory that is read.

Related references
10.6 Commands view on page 10-204.
10.7 Debug Control view on page 10-207.

Related information
DS-5 Debugger commands.
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6.3 About virtual and physical memory
 

Processors that contain a Memory Management Unit (MMU) provide two views of memory,
virtual and physical. The virtual address is the address prior to address translation in the MMU
and the physical address is the address after translation. Normally when the debugger accesses
memory, it uses virtual addresses. However, if the MMU is disabled then the mapping is flat and
the virtual address is the same as the physical address. To force the debugger to use physical
addresses prefix an addresses with P:. For example:

P:0x8000
P:0+main creates a physical address with the address offset of main()

If your processor additionally contains TrustZone technology, then you have access to Secure and
Normal worlds, each with their own separate virtual and physical address mappings. In this case,
the address prefix P: is not available, and instead you must use NP: for normal physical and SP:
for secure physical.

 Note 

Physical address access is not enabled for all operations. For example, the ARM hardware does
not provide support for setting breakpoints via a physical address.

When memory is accessed via a physical address the caches are not flushed. Hence, results might
differ depending on whether you view memory through the physical or virtual addresses
(assuming they are addressing the same memory addresses).

Related references
10.6 Commands view on page 10-204.
10.7 Debug Control view on page 10-207.

Related information
DS-5 Debugger commands.
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6.4 About debugging hypervisors
 

ARM processors that support virtualization extensions have the ability to run multiple guest
operating systems beneath a hypervisor. The hypervisor is the software that arbitrates amongst the
guest operating systems and controls access to the hardware.

DS-5 Debugger provides basic support for bare-metal hypervisor debugging. When connected to a
processor that supports virtualization extensions, the debugger enables you to distinguish between
hypervisor and guest memory, and to set breakpoints that only apply when in hypervisor mode or
within a specific guest operating system.

A hypervisor typically provides separate address spaces for itself as well as for each guest
operating system. Unless informed otherwise, all memory accesses by the debugger occur in the
current context. If you are stopped in hypervisor mode then memory accesses use the hypervisor
memory space, and if stopped in a guest operating system then memory accesses use the address
space of the guest operating system. To force access to a particular address space you must prefix
the address with either H: for hypervisor or N: for guest operating system. Note that it is only
possible to access the address space of the guest operating system that is currently scheduled to
run within the hypervisor. It is not possible to specify a different guest operating system.

Similarly, hardware and software breakpoints can be configured to match on hypervisor or guest
operating systems using the same address prefixes. If no address prefix is used then the breakpoint
applies to the address space that is current when the breakpoint is first set. For example, if a
software breakpoint is set in memory that is shared between hypervisor and a guest operating
system, then the possibility exists for the breakpoint to be hit from the wrong mode, and in this
case the debugger may not recognize your breakpoint as the reason for stopping.

For hardware breakpoints only, not software breakpoints, you can additionally configure them to
match only within a specific guest operating system. This feature uses the architecturally defined
Virtual Machine ID (VMID) register to spot when a specific guest operating system is executing.
The hypervisor is responsible for assigning unique VMIDs to each guest operating system setting
this in the VMID register when that guest operating system executes. In using this feature, it is
your responsibility to understand which VMID is associated with each guest operating system that
you want to debug. Assuming a VMID is known, you can apply a breakpoint to it within the
Breakpoints view or by using the break-stop-on-vmid command.

When debugging a system that is running multiple guest operating systems, you can optionally
enable the set print current-vmid setting to receive notifications in the console when the
debugger stops and the current VMID changes. You can also obtain the VMID within DS-5
scripts using the $vmid debugger variable.

Related references
10.6 Commands view on page 10-204.
10.7 Debug Control view on page 10-207.

Related information
DS-5 Debugger commands.
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6.5 About debugging big.LITTLE systems
 

A big.LITTLE system is designed to optimize both high performance and low power consumption
over a wide variety of workloads. It achieves this by including one or more high performance
processors alongside one or more low power processors. The system transitions the workload
between the processors as necessary to achieve this goal.

big.LITTLE systems are typically configured in a Symmetric MultiProcessing (SMP)
configuration. An operating system or hypervisor controls which processors are powered up or
down at any given time and assists in migrating tasks between them.

For bare-metal debugging on big.LITTLE systems, you can establish an SMP connection within
DS-5 Debugger. In this case all the processors in the system are brought under the control of the
debugger. The debugger monitors the power state of each processor as it runs and displays it in the
Debug Control view and on the command -line. Processors that are powered-down are visible to
the debugger but cannot be accessed.

For Linux application debugging on big.LITTLE systems, you can establish a gdbserver
connection within DS-5 Debugger. Linux applications are typically unaware of whether they are
running on a big processor or a little processor because this is hidden by the operating system.
There is therefore no difference within the debugger when debugging a Linux application on a
big.LITTLE system as compared to application debug on any other system.

Related concepts
6.6 About debugging bare-metal symmetric multiprocessing systems on page 6-141.

Related references
10.6 Commands view on page 10-204.
10.7 Debug Control view on page 10-207.

Related information
DS-5 Debugger commands.
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6.6 About debugging bare-metal symmetric multiprocessing systems
 

DS-5 Debugger supports debugging bare-metal Symmetric MultiProcessing (SMP) systems. The
debugger expects an SMP system to meet the following requirements:

• The same ELF image running on all processors.
• All processors must have identical debug hardware. For example, the number of hardware

breakpoint and watchpoint resources must be identical.
• Breakpoints and watchpoints must only be set in regions where all processors have identical

memory maps, both physical and virtual. Processors with different instance of identical
peripherals mapped at the same address are considered to meet this requirement, as in the case
of the private peripherals of ARM multicore processors.

Configuring and connecting

To enable SMP support in the debugger you must first configure a debug session in the Debug
Configurations dialog. Targets that support SMP debugging are identified by having SMP
mentioned in the Debug operation drop-down list.

Configuring a single SMP connection is all you require to enable SMP support in the debugger.
On connection, you can then debug all of the SMP processors in your system by selecting them in
the Debug Control view.

Image and symbol loading

When debugging an SMP system, image and symbol loading operations apply to all the SMP
processors. For image loading, this means that the image code and data are written to memory
once through one of the processors, and are assumed to be accessible through the other processors
at the same address because they share the same memory. For symbol loading, this means that
debug information is loaded once and is available when debugging any of the processors.

Running, stopping and stepping

When debugging an SMP system, attempting to run one processor automatically starts running all
the other processors in the system. Similarly, when one processor stops (either because you
requested it or because of an event such as a breakpoint being hit), then all processors in the
system stop.

For instruction level single-stepping (stepi and nexti commands), then the currently selected
processor steps one instruction. The exception to this is when a nexti operation is required to
step over a function call in which case the debugger sets a breakpoint and then runs all processors.
All other stepping commands affect all processors.

Depending on your system, there might be a delay between one processor running or stopping and
another processor running or stopping. This delay can be very large because the debugger must
manually run and stop all the processors individually.

In rare cases, one processor might stop and one or more of the others fails to stop in response. This
can occur, for example, when a processor running code in secure mode has temporarily disabled
debug ability. When this occurs, the Debug Control view displays the individual state of each
processor (running or stopped), so that you can see which ones have failed to stop. Subsequent run
and step operations might not operate correctly until all the processors stop.

Breakpoints, watchpoints, and signals

By default, when debugging an SMP system, breakpoint, watchpoint, and signal (vector catch)
operations apply to all processors. This means that you can set one breakpoint to trigger when any
of the processors execute code that meets the criteria. When the debugger stops due to a
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breakpoint, watchpoint, or signal, then the processor that causes the event is listed in the
Commands view.

Breakpoints or watchpoints can be configured for one or more processors by selecting the required
processor in the relevant Properties dialog box. Alternatively, you can use the break-stop-on-
cores command. This feature is not available for signals.

Examining target state

Views of the target state, including registers, call stack, memory, disassembly, expressions, and
variables contain content that is specific to a processor.

Views such as breakpoints, signals and commands are shared by all the processors in the SMP
system, and display the same contents regardless of which processor is currently selected.

Trace

When you are using a connection that enables trace support then you are able to view trace for
each of the processors in your system. By default, the Trace view shows trace for the processor
that is currently selected in the Debug Control view. Alternatively, you can choose to link a
Trace view to a specific processor by using the Linked: context toolbar option for that Trace
view. Creating multiple Trace views linked to specific processors enables you to view the trace
from multiple processors at the same time. The indexes in the Trace views do not necessarily
represent the same point in time for different processors.

Related concepts
6.5 About debugging big.LITTLE systems on page 6-140.
4.1 About loading an image on to the target on page 4-97.
4.2 About loading debug information into the debugger on page 4-99.

Related references
4.5 About breakpoints and watchpoints on page 4-103.
4.6 Setting an execution breakpoint on page 4-105.
4.7 Working with data watchpoints on page 4-107.
4.8 Setting a tracepoint on page 4-109.
4.9 Setting Streamline start and stop points on page 4-110.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.12 Pending breakpoints and watchpoints on page 4-117.
4.15 Stepping through an application on page 4-120.
10.4 Breakpoints view on page 10-197.
10.6 Commands view on page 10-204.
10.7 Debug Control view on page 10-207.
10.8 Disassembly view on page 10-211.
10.13 Memory view on page 10-223.
10.14 Modules view on page 10-227.
10.15 Registers view on page 10-231.
10.22 Variables view on page 10-248.

Related information
DS-5 Debugger commands.
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6.7 About debugging multi-threaded applications
 

The debugger tracks the current thread using the debugger variable, $thread. You can use this
variable in print commands or in expressions. Threads are displayed in the Debug Control view
with a unique ID that is used by the debugger and a unique ID from the Operating System (OS) :

Thread 1086 #1 stopped (PID 1086)

where #1 is the unique ID used by the debugger and PID 1086 is the ID from the OS.

A separate call stack is maintained for each thread and the selected stack frame is shown in bold
text. All the views in the DS-5 Debug perspective are associated with the selected stack frame and
are updated when you select another frame.

Figure 6-1  Threading call stacks in the Debug Control view

Related references
10.4 Breakpoints view on page 10-197.
10.6 Commands view on page 10-204.
10.7 Debug Control view on page 10-207.
10.8 Disassembly view on page 10-211.
10.13 Memory view on page 10-223.
10.14 Modules view on page 10-227.
10.15 Registers view on page 10-231.
10.22 Variables view on page 10-248.
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6.8 About debugging shared libraries
 

Shared libraries enable parts of your application to be dynamically loaded at runtime. You must
ensure that the shared libraries on your target are the same as those on your host. The code layout
must be identical, but the shared libraries on your target do not require debug information.

You can set standard execution breakpoints in a shared library but not until it is loaded by the
application and the debug information is loaded into the debugger. Pending breakpoints however,
enable you to set execution breakpoints in a shared library before it is loaded by the application.

When a new shared library is loaded the debugger re-evaluates all pending breakpoints, and those
with addresses that it can resolve are set as standard execution breakpoints. Unresolved addresses
remain as pending breakpoints.

The debugger automatically changes any breakpoints in a shared library to a pending breakpoint
when the library is unloaded by your application.

You can load shared libraries in the Debug Configurations dialog box. If you have one library file
then you can use the Load symbols from file option in the Files tab.

Figure 6-2  Adding individual shared library files

Alternatively if you have multiple library files then it is probably more efficient to modify the
search paths in use by the debugger when searching for shared libraries. To do this you can use the
Shared library search directory option in the Paths panel of the Debugger tab.
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Figure 6-3  Modifying the shared library search paths

For more information on the options in the Debug Configurations dialog box, use the dynamic
help.

Related references
4.15 Stepping through an application on page 4-120.
5.1 Examining the target execution environment on page 5-129.
5.2 Examining the call stack on page 5-131.
4.16 Handling Unix signals on page 4-122.
4.17 Handling processor exceptions on page 4-124.
10.4 Breakpoints view on page 10-197.
10.6 Commands view on page 10-204.
10.7 Debug Control view on page 10-207.
10.8 Disassembly view on page 10-211.
10.13 Memory view on page 10-223.
10.14 Modules view on page 10-227.
10.15 Registers view on page 10-231.
10.22 Variables view on page 10-248.
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6.9 About debugging a Linux kernel
 

DS-5 supports source level debugging of a Linux kernel. The Linux kernel (and associated device
drivers) can be debugged in the same way as a standard ELF format executable. For example, you
can set breakpoints in the kernel code, step through the source, inspect the call stack, and watch
variables.

 Note 

User space parameters (marked __user) that are not currently mapped in cannot be read by the
debugger.

To debug the kernel:

1. Compile the kernel source using the following options:

• CONFIG_DEBUG_KERNEL=y
• CONFIG_DEBUG_INFO=y
• Other options might be required depending on the type of debugging you want to perform.

Compiling the kernel source generates a Linux kernel image and symbol files containing
debug information.

 Note 

Be aware that a Linux kernel is always compiled with full optimizations and inlining enabled,
therefore:

• stepping through code might not work as expected due to the possible reordering of some
instructions

• some variables might be optimized out by the compiler and therefore not be available for
the debugger.

2. Load the Linux kernel on to the target
3. Load kernel debug information into the debugger
4. Debug the kernel as required.

Related concepts
6.10 About debugging Linux kernel modules on page 6-148.

Related tasks
2.4 Configuring a connection to a Linux Kernel on page 2-33.

Related references
4.15 Stepping through an application on page 4-120.
5.1 Examining the target execution environment on page 5-129.
5.2 Examining the call stack on page 5-131.
4.16 Handling Unix signals on page 4-122.
4.17 Handling processor exceptions on page 4-124.
10.36 Debug Configurations - Files tab on page 10-272.
10.37 Debug Configurations - Debugger tab on page 10-276.
10.4 Breakpoints view on page 10-197.
10.6 Commands view on page 10-204.
10.7 Debug Control view on page 10-207.
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10.8 Disassembly view on page 10-211.
10.13 Memory view on page 10-223.
10.14 Modules view on page 10-227.
10.15 Registers view on page 10-231.
10.22 Variables view on page 10-248.

Related information
Debugging a loadable kernel module.
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6.10 About debugging Linux kernel modules
 

Linux kernel modules provide a way to extend the functionality of the kernel, and are typically
used for things such as device and file system drivers. Modules can either be built into the kernel
or can be compiled as a loadable module and then dynamically inserted and removed from a
running kernel during development without having to frequently recompile the kernel. However,
some modules must be built into the kernel and are not suitable for loading dynamically. An
example of a built-in module is one that is required during kernel boot and must be available prior
to the root file system being mounted.

You can set source-level breakpoints in a module provided that the debug information is loaded
into the debugger. Attempts to set a breakpoint in a module before it is inserted into the kernel
results in the breakpoint being pended.

When debugging a module, you must ensure that the module on your target is the same as that on
your host. The code layout must be identical, but the module on your target does not require debug
information.

Built-in module

To debug a module that has been built into the kernel, the procedure is the same as for debugging
the kernel itself:

1. Compile the kernel together with the module.
2. Load the kernel image on to the target.
3. Load the related kernel image with debug information into the debugger
4. Debug the module as you would for any other kernel code.

Built-in (statically linked) modules are indistinguishable from the rest of the kernel code, so are
not listed by the info os-modules command and do not appear in the Modules view.

Loadable module

The procedure for debugging a loadable kernel module is more complex. From a Linux terminal
shell, you can use the insmod and rmmod commands to insert and remove a module. Debug
information for both the kernel and the loadable module must be loaded into the debugger. When
you insert and remove a module the debugger automatically resolves memory locations for debug
information and existing breakpoints. To do this, the debugger intercepts calls within the kernel to
insert and remove modules. This introduces a small delay for each action whilst the debugger
stops the kernel to interrogate various data structures. For more information on debugging a
loadable kernel module, see the tutorial in Getting Started with DS-5.

 Note 

A connection must be established and Operating System (OS) support enabled within the
debugger before a loadable module can be detected. OS support is automatically enabled when a
Linux kernel image is loaded into the debugger. However, you can manually control this by using
the set os command.

Related concepts
6.9 About debugging a Linux kernel on page 6-146.

Related tasks
2.4 Configuring a connection to a Linux Kernel on page 2-33.
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Related references
4.15 Stepping through an application on page 4-120.
5.1 Examining the target execution environment on page 5-129.
5.2 Examining the call stack on page 5-131.
4.16 Handling Unix signals on page 4-122.
4.17 Handling processor exceptions on page 4-124.
10.4 Breakpoints view on page 10-197.
10.6 Commands view on page 10-204.
10.7 Debug Control view on page 10-207.
10.8 Disassembly view on page 10-211.
10.13 Memory view on page 10-223.
10.14 Modules view on page 10-227.
10.15 Registers view on page 10-231.
10.22 Variables view on page 10-248.

Related information
Debugging a loadable kernel module.
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6.11 About debugging FreeRTOS ™
FreeRTOS is an open-source real-time operating system.

DS-5 Debugger provides the following support for debugging FreeRTOS:

• Supports FreeRTOS on Cortex-M cores.
• View FreeRTOS tasks in the Debug Control view.
• View FreeRTOS tasks and queues in the RTOS Data view.

To enable FreeRTOS support in DS-5 Debugger, in the Debug Configuration dialog, select
FreeRTOS in the OS tab. Debugger support is activated when FreeRTOS is initialized on the
target device.

 Note 

Operating system support in the debugger is activated only when OS-specific debug symbols are
loaded. Ensure that the debug symbols for the operating system are loaded before using any of the
OS-specific views and commands.

When building your FreeRTOS image, ensure that the following compiler flags are set:

• -DportREMOVE_STATIC_QUALIFIER
• -DINCLUDE_xTaskGetIdleTaskHandle
• -DconfigQUEUE_REGISTRY_SIZE=n (where n >= 1)

If these flags are set incorrectly, FreeRTOS support might fail to activate in DS-5 Debugger. See
the documentation supplied with FreeRTOS to view the details of these flags.
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6.12 About debugging TrustZone enabled targets
 

ARM TrustZone® is a security technology designed into some ARM processors. For example, the
Cortex-A class processors. It segments execution and resources such as memory and peripherals
into secure and normal worlds.

When connected to a target that supports TrustZone and where access to the secure world is
permitted, then the debugger provides access to both secure and normal worlds. In this case, all
addresses and address-related operations are specific to a single world. This means that any
commands you use that require an address or expression must also specify the world that they
apply to. : 0x1000

Where:

N:
For an address in Normal World memory.

S:
For an address in Secure World memory.

If you want to specify an address in the current world, then you can omit the prefix.

When loading images and debug information it is important that you load them into the correct
world. The debug launcher panel does not provide a way to directly specify an address world for
images and debug information, so to achieve this you must use scripting commands instead. The
Debugger tab in the debugger launcher panel provides an option to run a debug initialization
script or a set of arbitrary debugger commands on connection. Here are some example commands:

• Load image only to normal world (applying zero offset to addresses in the image)

load myimage.axf N:0

• Load debug information only to secure world (applying zero offset to addresses in the debug
information)

file myimage.axf S:0

• Load image and debug information to secure world (applying zero offset to addresses)

loadfile myimage.axf S:0

When an operation such as loading debug symbols or setting a breakpoint needs to apply to both
normal and secure worlds then you must perform the operation twice, once for the normal world
and once for the secure world.

Registers such as $PC have no world. To access the content of memory from an address in a
register that is not in the current world, you can use an expression, N:0+$PC. This is generally not
necessary for expressions involving debug information, because these are associated with a world
when they are loaded.

Related references
10.4 Breakpoints view on page 10-197.
10.6 Commands view on page 10-204.
10.7 Debug Control view on page 10-207.
10.8 Disassembly view on page 10-211.
10.13 Memory view on page 10-223.
10.14 Modules view on page 10-227.
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10.15 Registers view on page 10-231.
10.22 Variables view on page 10-248.

Related information
DS-5 Debugger commands.
ARM Security Technology Building a Secure System using TrustZone Technology.
Technical Reference Manual.
Architecture Reference Manual.
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6.13 About debugging a Unified Extensible Firmware Interface (UEFI)
UEFI defines a software interface to control the start-up of complex microprocessor systems.
UEFI on ARM allows you to control the booting of ARM-based servers and client computing
devices.

DS-5 provides a complete UEFI development environment which enables you to:

• Fetch the UEFI source code via the Eclipse Git plug-in (available as a separate download from
the Eclipse website).

• Build the source code using the ARM Compiler.
• Download the executables to a software model (a Cortex-A9x4 FVP is provided with DS-5) or

to a hardware target (available separately).
• Run/debug the code using the DS-5 Debugger.
• Debug dynamically loaded modules at source-level using Jython scripts.

To download the UEFI source code and Jython scripts, search for "SourceForge.net:
ArmPlatformPkg/ArmVExpressPkg" in your preferred search engine.

For more information, see this blog: UEFI Debug Made Easy
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6.14 About application rewind
Application rewind is a DS-5 Debugger feature that allows you to debug backwards as well as
forwards through the execution of Linux and Android applications.

 Note 

The application rewind feature in DS-5 Debugger is license managed. Contact your support
representative for details about this feature.

Debugging backwards is useful to help track down how an application reached a particular state,
without having to repeatedly rerun your application from the beginning. Using this feature, you
can both run and step, including hitting breakpoints and watchpoints. You can also view the
contents of recorded memory, registers, and variables at any point in your application's execution.

 Note 

• Application rewind does not follow forked processes.
• When debugging backwards, you can only view the contents of recorded memory, registers, or

variables. You cannot edit or change them.
• Application rewind supports architecture ARMv5TE targets and later, except for the 64-bit

ARMv8 architecture.

Application rewind uses a custom debug agent that records the execution of your application as it
runs. This custom debug agent implements a buffer on the target to store history for recorded
executions. The default is a straight buffer, which records events until the buffer limit is reached,
and then stops the execution. At this point, you can either increase the size of the buffer or change
the buffer to be circular. Once the limit of a circular buffer is reached, instead of stopping
execution, the data wraps around and overwrites old content. Using a circular buffer ensures that
execution does not stop when the buffer limit is reached, but you lose the execution history
beyond the point where data wrapped around.

• To change buffer limits, use the command:set debug-agent history-buffer-size
"size" Where size specifies the amount of memory. You can specify the value in kilobytes
(K), megabytes (M), or gigabytes (G).

For example, set debug-agent history-buffer-size "256.00 M”

• To change buffer type, use the command set debug-agent history-buffer-type
"type" Where type specifies the type of buffer, which is either straight or circular.

For example, set debug-agent history-buffer-type "circular"

 Note 

Debugging your application using application rewind results in increased memory consumption on
your target and might slow down your application. The exact impact is dependent on the behavior
of your application. Applications that perform large amounts of I/O are likely to experience
increased memory consumption during the recording process.

Related tasks
2.5.1 Connecting to an existing application and application rewind session on page 2-35.
2.5.2 Downloading your application and application rewind server on the target system on page
2-37.
2.5.3 Starting the application rewind server and debugging the target-resident application on
page 2-38.
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2.6.1 Attaching to a running Android application on page 2-40.
2.6.2 Downloading and debugging an Android application on page 2-41.

Related references
2.1 Types of target connections on page 2-28.
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Chapter 7
Controlling runtime messages

Describes semihosting and how to control runtime messages.
It contains the following:

• 7.1 About semihosting and top of memory on page 7-157.
• 7.2 Working with semihosting on page 7-158.
• 7.3 Enabling automatic semihosting support in the debugger on page 7-159.
• 7.4 Controlling semihosting messages using the command-line console on page 7-160.
• 7.5 Controlling the output of logging messages on page 7-161.
• 7.6 About Log4j configuration files on page 7-162.
• 7.7 Customizing the output of logging messages from the debugger on page 7-163.
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7.1 About semihosting and top of memory
Describes a typical memory layout for an ARM target.

Semihosting is typically used when debugging an application that is using the C library and
running without an operating system. This enables functions in the C library, such as printf()
and scanf(), to use the screen and keyboard on the host workstation instead of having a screen
and keyboard on the target system.

Semihosting uses stack base and heap base addresses to determine the location and size of the
stack and heap.

The stack base, also known as the top of memory, is an address that is by default 64K from the
end of the heap base.

The heap base is by default contiguous to the application code.

The following figure shows a typical layout for an ARM target.

Stack

Heap

ZI data

RW 
data

Application code
(RO +RW)

End of 
application

Application 
base

Heap 
base

Heap 
limit

0xFFFFFFFF

Stack base
(Top of 

memory)

0x00000000

Figure 7-1  Typical layout between top of memory, stack, and heap

Related references
4.3 About passing arguments to main() on page 4-101.
7.2 Working with semihosting on page 7-158.
7.3 Enabling automatic semihosting support in the debugger on page 7-159.
7.4 Controlling semihosting messages using the command-line console on page 7-160.
10.39 Debug Configurations - Arguments tab on page 10-280.
10.1 App Console view on page 10-191.

Related information
DS-5 Debugger commands.
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7.2 Working with semihosting
Gives an overview of semihosting support in the debugger.

Semihosting is supported by the debugger in both the command-line console and in Eclipse.

Command-line console
By default all semihosting messages (stdout and stderr) are output to the console.
When using this console interactively with debugger commands you must use the stdin
command to send input messages (stdin) to the application.

Alternatively, you can disable semihosting in the console and use a separate telnet session
to interact directly with the application. During start up, the debugger creates a
semihosting server socket and displays the port number to use for the telnet session.

Eclipse
The App Console view within the DS-5 Debug perspective controls all the semihosting
input/output requests (stdin, stdout, and stderr) between the application code and
the debugger.

Related references
4.3 About passing arguments to main() on page 4-101.
7.1 About semihosting and top of memory on page 7-157.
7.3 Enabling automatic semihosting support in the debugger on page 7-159.
7.4 Controlling semihosting messages using the command-line console on page 7-160.
10.39 Debug Configurations - Arguments tab on page 10-280.
10.1 App Console view on page 10-191.

Related information
DS-5 Debugger commands.
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7.3 Enabling automatic semihosting support in the debugger
Describes how create an ELF symbol to enable semihosting support in the debugger.

By default, semihosting support is disabled in the debugger. However, the debugger can
automatically enable semihosting on supported targets when you load debug information that
contains the ELF symbol __auto_semihosting.

In C code you can easily create the ELF symbol by defining a function with the name
__auto_semihosting. To prevent this function generating any additional code or data in your
image you can define it as an alias of another function. This places the required ELF symbol in the
debug information but does not affect the code and data in the application image.

 Note 

Creating a special semihosting ELF symbol is not required if you build your application image
using ARM Compiler 5.0 and later. The linker automatically adds this symbol if required.

Create a special semihosting ELF symbol with an alias to main()

#include <stdio.h>
void __auto_semihosting(void) __attribute__((alias("main"))); 
                                     //mark as alias for main() to declare 
                                     //semihosting ELF symbol in debug information only
int main(void)
{
    printf("Hello world\n");
    return 0;
}

Related references
4.3 About passing arguments to main() on page 4-101.
7.1 About semihosting and top of memory on page 7-157.
7.2 Working with semihosting on page 7-158.
7.4 Controlling semihosting messages using the command-line console on page 7-160.
10.39 Debug Configurations - Arguments tab on page 10-280.
10.1 App Console view on page 10-191.

Related information
DS-5 Debugger commands.
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7.4 Controlling semihosting messages using the command-line console
Describes the debugger commands you can use to control semihosting messages.

You can control input/output requests from application code to a host workstation running the
debugger. These are called semihosting messages.

By default, all messages are output to the command-line console but you can choose to redirect
them when launching the debugger by using one or more of the following:

--disable_semihosting
Disables all semihosting operations.

--disable_semihosting_console
Disables all semihosting operations to the debugger console.

--semihosting_error=filename
Specifies a file to write stderr for semihosting operations.

--semihosting_input=filename
Specifies a file to read stdin for semihosting operations.

--semihosting_output=filename
Specifies a file to write stdout for semihosting operations.

Related references
4.3 About passing arguments to main() on page 4-101.
7.1 About semihosting and top of memory on page 7-157.
7.2 Working with semihosting on page 7-158.
7.3 Enabling automatic semihosting support in the debugger on page 7-159.
10.39 Debug Configurations - Arguments tab on page 10-280.
10.1 App Console view on page 10-191.

Related information
DS-5 Debugger commands.
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7.5 Controlling the output of logging messages
Describes the debugger commands you can use to control logging messages.

You can control logging messages from the debugger. By default, all messages are output to the
App Console view but you can control the output and redirection of logging messages by using
the log config and log file debugger commands:

log config=option
Specifies the type of logging configuration to output runtime messages from the
debugger:

Where:

option
Specifies a predefined logging configuration or a user-defined logging
configuration file:

info
Output messages using the predefined INFO level configuration. This is
the default.

debug
Output messages using the predefined DEBUG level configuration.

filename
Specifies a user-defined logging configuration file to customize the
output of messages. The debugger supports log4j configuration files.

log file=filename
Output messages to a file in addition to the console.

Related concepts
7.6 About Log4j configuration files on page 7-162.

Related tasks
7.7 Customizing the output of logging messages from the debugger on page 7-163.

Related information
Log4j in Apache Logging Services.
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7.6 About Log4j configuration files
Lists the log4j logging levels you can use to control messages.

In general, the predefined logging configurations provided by the debugger are sufficient for most
debugging tasks. However, if you want finer control then you can specify your own customized
logging configuration by creating a log4j configuration file. Log4j is an open source logging
system for the Java platform and the debugger currently uses version 1.2.

Log4j uses a hierarchy of logging levels to control messages with each level inheriting all lower
levels. The following logging levels are currently supported by the debugger:

• DEBUG
• INFO
• WARN
• ERROR
• FATAL

Messages are assigned to a specific logging level and can be redirected to different output
locations using one or more of the following log4j components:

Table 7-1  Log4j Components

Component Description

Logger Defines the level of logging.

Appender Defines the output destination.

Layout Defines the message format.

Related tasks
7.7 Customizing the output of logging messages from the debugger on page 7-163.

Related references
7.5 Controlling the output of logging messages on page 7-161.

Related information
Log4j in Apache Logging Services.
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7.7 Customizing the output of logging messages from the debugger
Describes how to create a customized log4j configuration file.

Procedure 

1. Create an Appender instance for the required logging type. The following types are
supported:

• ConsoleAppender
• RollingFileAppender.

2. Suppress the Threshold logging level, if required.
3. If the Appender instance outputs to a file, define the layout for the Appender instance. The

following layouts are supported:

PatternLayout
Textual format.

HTMLLayout
HTML format.

4. If the Appender instance outputs to a file, define the file components. The following
components are supported:

File
File name

MaxFileSize
Long integer or string, 10KB.

MaxBackupIndex
Maximum number of log files to use. The default is 1.

5. If you use the layout PatternLayout, you can enhance the format of a message by using an
additional ConversionPattern component. The following patterns are supported:

%c
Logging category

%C
Class name

%d
Date

%F
Filename

%l
Caller location

%L
Line number

%m
Logging message

%M
Method name

%n
End of line character

%p
Logging level. For alignment, you can also supply the number of characters, for
example: %-5p.

%r
Elapsed time (milliseconds)

%t
Thread name.
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6. Define the name component for the Appender instance, if required.
7. Define the logging level for the rootLogger and assign to the required Appender instance.
8. To pass the log4j configuration file to the debugger you can use:

• --log_config=filename command-line option when launching the debugger from the
command-line console.

• log config filename debugger command if the debugger is already running.

Example showing how to log messages to the console

The following example shows how to log messages to the console. This sets the default logging
level to DEBUG. All the logging for this example is output to the console. However the output of
error and warning messages are sent to the error stream, and debug and info messages are sent to
the output stream.

# Setup logConsole to be a ConsoleAppender
log4j.appender.logConsole=org.apache.log4j.ConsoleAppender
log4j.appender.logConsole.layout=org.apache.log4j.PatternLayout
log4j.appender.logConsole.layout.ConversionPattern=%m%n
log4j.appender.logConsole.name=Console
# Send all DEBUG level logs to the console
log4j.rootLogger=DEBUG, console

Example showing how to log messages to a file

The following example shows how to log messages to a file. This sets the default logging level to
DEBUG. However some packages only write logs at the INFO level. All the logging for this
example is output to a file. When the file reaches 10MB, it is renamed by adding .1 file extension
and logging continues to write to a new file with the original name. This happens multiple times,
but only ten backup files are stored.

# Setup logFile to be a RollingFileAppender
log4j.appender.logFile=org.apache.log4j.RollingFileAppender
log4j.appender.logFile.File=output.log
log4j.appender.logFile.MaxFileSize=10MB
log4j.appender.logFile.MaxBackupIndex=10
log4j.appender.logFile.layout=org.apache.log4j.PatternLayout
log4j.appender.logFile.layout.ConversionPattern=%d %-5p %t %c - %m%n
# Send all DEBUG level logs to a file: logFile
log4j.rootLogger=DEBUG, logFile
# Send all INFO level logs in the debug packages to the file: logFile
log4j.logger.com.arm.debug.logging=INFO, logFile

Example showing how to combine the logging of messages to the console and a file

The following example shows a combination of the previous examples. This sets the default
logging level to INFO. All the INFO level logging for this example is output to the console.
However, a selection of messages are also sending output to two files.

# Setup logConsole to be a ConsoleAppender
log4j.appender.logConsole=org.apache.log4j.ConsoleAppender
# Suppress all logs to the console that are lower than the threshold
log4j.appender.logConsole.Threshold=INFO
log4j.appender.logConsole.layout=org.apache.log4j.PatternLayout
log4j.appender.logConsole.layout.ConversionPattern=%m%n
log4j.appender.logConsole.name=Console
# Setup logConnFile to be a RollingFileAppender
log4j.appender.logConnFile=org.apache.log4j.RollingFileAppender
# Suppress all logs to the file that are lower than the threshold
log4j.appender.logConnFile.Threshold.DEBUG
log4j.appender.logConnFile.File=connection.log
log4j.appender.logConnFile.MaxFileSize=10MB
log4j.appender.logConnFile.MaxBackupIndex=10
log4j.appender.logConnFile.layout=org.apache.log4j.PatternLayout
log4j.appender.logConnFile.layout.ConversionPattern=%d %-5p %t %c - %m%n
# Setup logTAccessFile to be a RollingFileAppender
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log4j.appender.logTAccessFile=org.apache.log4j.RollingFileAppender
# Suppress all logs to the file that are lower than the threshold
log4j.appender.logTAccessFile.Threshold.DEBUG
log4j.appender.logTAccessFile.File=target_acccess.log
log4j.appender.logTAccessFile.MaxFileSize=10MB
log4j.appender.logTAccessFile.MaxBackupIndex=10
log4j.appender.logTAccessFile.layout=org.apache.log4j.PatternLayout
log4j.appender.logTAccessFile.layout.ConversionPattern=%d %-5p %t %c - %m%n
# Send all INFO logs to the console
log4j.rootLogger=INFO, logConsole
# Send all DEBUG logs in the connection package to the file: logConnFile
log4j.logger.com.arm.debug.core.engine.connection=DEBUG, logConnFile
# Send all DEBUG logs in the targetaccess package to the file: logTAccessFile
log4j.logger.com.arm.debug.core.targetaccess.rvi=DEBUG, logTAccessFile

Related concepts
7.6 About Log4j configuration files on page 7-162.

Related references
7.5 Controlling the output of logging messages on page 7-161.

Related information
Log4j in Apache Logging Services.
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Chapter 8
Debugging with scripts

Describes how to use scripts containing debugger commands to enable you to automate debugging
operations.
It contains the following:

• 8.1 Exporting DS-5 Debugger commands generated during a debug session on page 8-167.
• 8.2 Creating a DS-5 Debugger script on page 8-168.
• 8.3 Creating a CMM-style script on page 8-169.
• 8.4 About Jython scripts on page 8-170.
• 8.5 Jython script concepts and interfaces on page 8-172.
• 8.6 Creating Jython projects in Eclipse for DS-5™ on page 8-174.
• 8.7 Creating a Jython script on page 8-177.
• 8.8 Running a script on page 8-179.

ARM DUI0446P Copyright © 2010-2013 ARM. All rights reserved. 8-166
Non-Confidential



8.1 Exporting DS-5 Debugger commands generated during a debug session
Shows a typical example of the commands generated by the debugger during a debug sessions.

You can work through a debug session using all the toolbar icons and menu options as required. A
full list of all the DS-5 Debugger commands generated during the current debug session is
recorded in the History view. Before closing Eclipse, you can select the commands that you want
in your script file and click on Export the selected lines as a script file to save them to a file.

Figure 8-1  Commands generated during a debug session
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8.2 Creating a DS-5 Debugger script
Shows a typical example of a DS-5 Debugger script.

The script file must contain only one command on each line. Each command can be identified
with comments if required. The .ds file extension must be used to identify this type of script.

# Filename: myScript.ds
# Initialization commands
load "struct_array.axf"       # Load image
file "struct_array.axf"       # Load symbols
break main                    # Set breakpoint at main()
break *0x814C                 # Set breakpoint at address 0x814C
# Run to breakpoint and print required values
run                           # Start running device
wait 0.5s                     # Wait or time-out after half a second
info stack                    # Display call stack
info registers                # Display info for all registers
# Continue to next breakpoint and print required values
continue                      # Continue running device
wait 0.5s                     # Wait or time-out after half a second
info functions                # Displays info for all functions
info registers                # Display info for all registers
x/3wx 0x8000                  # Display 3 words of memory from 0x8000 (hex)
...
# Shutdown commands
delete 1                      # Delete breakpoint assigned number 1
delete 2                      # Delete breakpoint assigned number 2
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8.3 Creating a CMM-style script
Shows a typical example of a CMM-style script.

The script file must contain only one command on each line. Each command can be identified
with comments if required. The .cmm or .t32 file extension must be used to identify this type of
script.

// Filename: myScript.cmm
system.up                     ; Connect to target and device
data.load.elf "hello.axf"     ; Load image and symbols
// Setup breakpoints and registers
break.set main /disable       ; Set breakpoint and immediately disabled
break.set 0x8048              ; Set breakpoint at specified address
break.set 0x8060              ; Set breakpoint at specified address
register.set R0 15            ; Set register R0
register.set PC main          ; Set PC register to symbol address
...
break.enable main             ; Enable breakpoint at specified symbol
// Run to breakpoint and display required values
go                            ; Start running device
var.print "Value is: " myVar  ; Display string and variable value
print %h r(R0)                ; Display register R0 in hexadecimal
// Run to breakpoint and print stack
go                            ; Run to next breakpoint
var.frame /locals /caller     ; Display all variables and function callers
...
// Shutdown commands
break.delete main             ; Delete breakpoint at address of main()
break.delete 0x8048           ; Delete breakpoint at address
break.delete 0x8060           ; Delete breakpoint at specified address
system.down                   ; Disconnect from target
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8.4 About Jython scripts
Shows a typical example of a Jython script.

Jython is a Java implementation of the Python scripting language. It provides extensive support
for data types, conditional execution, loops and organization of code into functions, classes and
modules, as well as access to the standard Jython libraries. Jython is an ideal choice for larger or
more complex scripts. These are important concepts that are required in order to write a debugger
Jython script.

The .py file extension must be used to identify this type of script.

# Filename: myScript.py
import sys
from arm_ds.debugger_v1 import Debugger
from arm_ds.debugger_v1 import DebugException
# Debugger object for accessing the debugger
debugger = Debugger()
# Initialisation commands
ec = debugger.getCurrentExecutionContext()
ec.getExecutionService().stop()
ec.getExecutionService().waitForStop()
# in case the execution context reference is out of date
ec = debugger.getCurrentExecutionContext()
# load image if provided in script arguments
if len(sys.argv) == 2:
    image = sys.argv[1]
    ec.getImageService().loadImage(image)
    ec.getExecutionService().setExecutionAddressToEntryPoint()
    ec.getImageService().loadSymbols(image)
    # we can use all the DS commands available
    print "Entry point: ",
    print ec.executeDSCommand("print $ENTRYPOINT")
    # Sample output:
    #         Entry point: $8 = 32768
else:
    pass # assuming image and symbols are loaded
# sets a temporary breakpoint at main and resumes
ec.getExecutionService().resumeTo("main") # this method is non-blocking
try:
    ec.getExecutionService().waitForStop(500) # wait for 500ms
except DebugException, e:
    if e.getErrorCode() == "JYI31": # code of "Wait for stop timed out" message
        print "Waiting timed out!"
        sys.exit()
    else:
        raise # re-raise the exception if it is a different error
ec = debugger.getCurrentExecutionContext()
def getRegisterValue(executionContext, name):
    """Get register value and return string with unsigned hex and signed
    integer, possibly string "error" if there was a problem reading
    the register.
    """
    try:
        value = executionContext.getRegisterService().getValue(name)
        # the returned value behaves like a numeric type,
        # and even can be accessed like an array of bytes, e.g. 'print value[:]'
        return "%s (%d)" % (str(value), int(value))
    except DebugException, e:
        return "error"
# print Core registers on all execution contexts
for i in range(debugger.getExecutionContextCount()):
    ec = debugger.getExecutionContext(i)
    # filter register names starting with "Core::"
    coreRegisterNames = filter(lambda name: name.startswith("Core::"),
                            ec.getRegisterService().getRegisterNames())
    # using Jython list comprehension get values of all these registers
    registerInfo = ["%s = %s" % (name, getRegisterValue(ec, name))
                                        for name in coreRegisterNames]
    registers = ", ".join(registerInfo[:3]) # only first three
    print "Identifier: %s, Registers: %s" % (ec.getIdentifier(), registers)
# Output:
#         Identifier: 1, Registers: Core::R0 = 0x00000010 (16), Core::R1 = 0x00000000 
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(0), Core::R2 = 0x0000A4A4 (42148)
#         ...

Related tasks
8.6.1 Creating a new Jython project in Eclipse for DS-5™ on page 8-174.
8.6.2 Configuring an existing project to use the DS-5™ Jython interpreter on page 8-175.
8.7 Creating a Jython script on page 8-177.
8.8 Running a script on page 8-179.

Related references
8.5 Jython script concepts and interfaces on page 8-172.
10.18 Scripts view on page 10-239.
10.34 Jython Script Parameters dialog box on page 10-268.
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8.5 Jython script concepts and interfaces
Summary of the important debugger interfaces and concepts.

Imports
The debugger module provides a Debugger class for initial access to the DS-5 Debugger,
with further classes, known as services, to access registers and memory. Here is an
example showing the full set of module imports that are typically placed at the top of the
jython script:

from arm_ds.debugger_v1 import Debugger
from arm_ds.debugger_v1 import DebugException

Execution Contexts
Most operations on DS-5 Debugger Jython interfaces require an execution context. The
execution context represents the state of the target system. Separate execution contexts
exist for each process, thread, or processor that is accessible in the debugger. You can
obtain an execution context from the Debugger class instance, for example:

# Obtain the first execution context
debugger = Debugger()
ec = debugger.getCurrentExecutionContext()

Registers
You can access processor registers, coprocessor registers and peripheral registers using
the debugger Jython interface. To access a register you must know its name. The name
can be obtained from the Registers view in the graphical debugger. The RegisterService
enables you to read and write register values, for a given execution context, for example:

# Print the Program Counter (PC) from execution context ec
value = ec.getRegisterService().getValue('PC')
print 'The PC is %s' %value

Memory
You can access memory using the debugger Jython interface. You must specify an
address and the number of bytes to access. The address and size can be an absolute
numeric value or a string containing an expression to be evaluated within the specified
execution context. Here is an example:

# Print 16 bytes at address 0x0 from execution context ec
print ec.getMemoryService().read(0x0, 16)

DS Commands
The debugger jython interface enables you to execute arbitrary DS-5 commands. This is
useful when the required functionality is not directly provided in the Jython interface.
You must specify the execution context, the command and any arguments that you want
to execute. The return value includes the textual output from the command and any
errors. Here is an example:

# Execute the DS-5 command 'print $ENTRYPOINT' and print the result
print ec.executeDSCommand('print $ENTRYPOINT')
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Error Handling
The methods on the debugger Jython interfaces throw DebugException whenever an error
occurs. You can catch exceptions to handle errors in order to provide more information.
Here is an example:

# Catch a DebugException and print the error message
try:
  ec.getRegisterService().getValue('ThisRegisterDoesNotExist')
except DebugException, de:
  print "Caught DebugException: %s" % (de.getMessage())

For more information on the DS-5 Debugger Jython API documentation select Help Contents
from the Help menu.

8 Debugging with scripts
8.5 Jython script concepts and interfaces

ARM DUI0446P Copyright © 2010-2013 ARM. All rights reserved. 8-173
Non-Confidential



8.6 Creating Jython projects in Eclipse for DS-5™

To work with Jython scripts in DS-5, the project must use DS-5 Jython as the interpreter. You can
either create a new Jython project in Eclipse for DS-5 with DS-5 Jython set as the interpreter or
configure an existing project to use DS-5 Jython as the interpreter.
It contains the following:

• 8.6.1 Creating a new Jython project in Eclipse for DS-5™ on page 8-174.
• 8.6.2 Configuring an existing project to use the DS-5™ Jython interpreter on page 8-175.

8.6.1 Creating a new Jython project in Eclipse for DS-5™

Use these instructions to create a new Jython project and select DS-5 Jython as the intepreter.

Procedure 

1. Select File > New > Project... from the main menu.
2. Expand the PyDev group.
3. Select PyDev Project.

Figure 8-2  PyDev project wizard
4. Click Next.
5. Enter the project name and select relevant details:

a) In Project name, enter a suitable name for the project.
b) In Choose the project type, select Jython.
c) In Interpreter, select DS-5 Jython.
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Figure 8-3  PyDev project settings
6. Click Finish to create the project.

Related concepts
8.4 About Jython scripts on page 8-170.

Related tasks
8.6.2 Configuring an existing project to use the DS-5™ Jython interpreter on page 8-175.
8.7 Creating a Jython script on page 8-177.
8.8 Running a script on page 8-179.

Related references
8.5 Jython script concepts and interfaces on page 8-172.
10.18 Scripts view on page 10-239.
10.34 Jython Script Parameters dialog box on page 10-268.

8.6.2 Configuring an existing project to use the DS-5™ Jython interpreter
Use these instructions to configure an existing project to use DS-5 Jython as the intepreter.

Procedure 

1. In the Project Explorer view, right-click the project and select PyDev > Set as PyDev
Project from the context menu.

2. From the Project menu, select Properties to display the properties for the selected project.
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 Note 

You can also right-click a project and select Properties to display the properties for the
selected project.

3. In the Properties dialog box, select PyDev - Interpreter/Grammar.
4. In Choose the project type, select Jython.
5. In Interpreter, select DS-5 Jython.
6. Click OK to apply these settings and close the dialog box.
7. Add a Python source file to the project.

 Note 

The .py file extension must be used to identify this type of script.

Related concepts
8.4 About Jython scripts on page 8-170.

Related tasks
8.6.1 Creating a new Jython project in Eclipse for DS-5™ on page 8-174.
8.7 Creating a Jython script on page 8-177.
8.8 Running a script on page 8-179.

Related references
8.5 Jython script concepts and interfaces on page 8-172.
10.18 Scripts view on page 10-239.
10.34 Jython Script Parameters dialog box on page 10-268.
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8.7 Creating a Jython script
Shows a typical workflow for creating and running a Jython script in the debugger.

Procedure 

1. Create an empty Jython script file.
2. Right-click the Jython script file and select Open.
3. Add the following code to your file in the editor:

from arm_ds.debugger_v1 import Debugger
from arm_ds.debugger_v1 import DebugException                    

 Note 

With this minimal code saved in the file you have access to auto-completion list and online
help. ARM recommends the use of this code to explore the Jython interface.

Figure 8-4  Jython auto-completion and help
4. Edit the file to contain the desired scripting commands.
5. Run the script in the debugger.

You can also view an entire Jython interface in the debugger by selecting a debugger object or
interface followed by the keyboard and mouse combination Ctrl+Click. This opens the source
code that implements it.

Related concepts
8.4 About Jython scripts on page 8-170.

Related tasks
8.6.1 Creating a new Jython project in Eclipse for DS-5™ on page 8-174.
8.6.2 Configuring an existing project to use the DS-5™ Jython interpreter on page 8-175.
8.8 Running a script on page 8-179.
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Related references
8.5 Jython script concepts and interfaces on page 8-172.
10.18 Scripts view on page 10-239.
10.34 Jython Script Parameters dialog box on page 10-268.
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8.8 Running a script
Describes how to run a script from Eclipse.

Procedure 

To run a script from Eclipse:

• You can run a script file immediately after the debugger connects to the target.

1. Launch Eclipse.
2. Configure a connection to the target. A DS-5 Debugger configuration can include the

option to run a script file immediately after the debugger connects to the target. To do
this select the script file in the Debugger tab of the DS-5 Debug configuration dialog
box.

3. Connect to the target.
• Run a script file whilst a debug session is in progress.

— In the Scripts view you can use script files:

1. Import one or more script files in the order that you want them to be executed.
2. Select the scripts that you want to execute.
3. Click on the Execute Selected Scripts toolbar icon.

Figure 8-5  Scripts view
— In the Commands view you can use the DS-5 Debugger source command.

Related concepts
8.4 About Jython scripts on page 8-170.

Related tasks
8.6.1 Creating a new Jython project in Eclipse for DS-5™ on page 8-174.
8.6.2 Configuring an existing project to use the DS-5™ Jython interpreter on page 8-175.
8.7 Creating a Jython script on page 8-177.

Related references
8.1 Exporting DS-5 Debugger commands generated during a debug session on page 8-167.
8.2 Creating a DS-5 Debugger script on page 8-168.
8.3 Creating a CMM-style script on page 8-169.
10.6 Commands view on page 10-204.
10.12 History view on page 10-221.
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10.18 Scripts view on page 10-239.
8.5 Jython script concepts and interfaces on page 8-172.
10.18 Scripts view on page 10-239.
10.34 Jython Script Parameters dialog box on page 10-268.

Related information
DS-5 Debugger commands.
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Chapter 9
Working with the Snapshot Viewer

Describes how to use the Snapshot Viewer.
It contains the following:

• 9.1 About the Snapshot Viewer on page 9-182.
• 9.2 Components of a Snapshot Viewer initialization file on page 9-184.
• 9.3 Connecting to the Snapshot Viewer on page 9-187.
• 9.4 Considerations when creating debugger scripts for the Snapshot Viewer on page 9-188.

ARM DUI0446P Copyright © 2010-2013 ARM. All rights reserved. 9-181
Non-Confidential



9.1 About the Snapshot Viewer
Summary of the important rules for the Snapshot Viewer.

The Snapshot Viewer can be used to analyze a snapshot representation of the application state of a
single processor in scenarios where interactive debugging is not possible.

 Note 

Currently DS-5 only supports DS-5 Debugger connections to the Snapshot Viewer using the
command-line console.

To enable debugging of an application using the Snapshot Viewer, you must have the following
data:

• register values
• memory values
• debug symbols.

If you are unable to provide all of this data then the level of debug that is available is
compromised. Capturing this data is specific to your application, and no tools are provided to help
with this. You might have to install exception or signal handlers to catch erroneous situations in
your application and dump the required data out.

You must also consider how to get the dumped data from your device onto a workstation that is
accessible by the debugger. Some suggestions on how to do this are to:

• write the data to a file on the host workstation using semihosting
• send the data over a UART to a terminal
• send the data over a socket using TCP/IP.

Register values

Register values are used to emulate the state of the original system at a particular point in time.
The most important registers are those in the current processor mode. For example, on an ARMv4
architecture processor these registers are R0-R15 and also the Program Status Registers (PSRs):

• Current Program Status Register (CPSR)
• Application Program Status Register (APSR)
• Saved Program Status Register (SPSR).

Be aware that on many ARM processors, an exception, a data abort, causes a switch to a different
processor mode. In this case you must ensure that the register values you use reflect the correct
mode in which the exception occurred, rather than the register values within your exception
handler.

If your application uses floating-point data and your device contains vector floating-point
hardware, then you must also provide the Snapshot Viewer with the contents of the vector
floating-point registers. The important registers to capture are:

• Floating-point Status and Control Register (FPSCR)
• Floating-Point EXCeption register (FPEXC)
• Single precision registers (Sn)
• Double precision registers (Dn)
• Quad precision registers (Qn).
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Memory values

The majority of the application state is usually stored in memory in the form of global variables,
the heap and the stack. Due to size constraints, it is often difficult to provide the Snapshot Viewer
with a copy of the entire contents of memory. In this case you must carefully consider the areas of
memory that are of particular importance.

If you are debugging a crash, the most useful information to find out is often the call stack,
because this shows the calling sequence of each function prior to the exception and the values of
all the respective function parameters. To show the call stack the debugger must know the current
stack pointer and have access to the contents of the memory that contains the stack. By default, on
ARM processors the stack grows downwards, you must provide the memory starting from the
current stack pointer and going up in memory until the beginning of the stack is reached. If you
are unable to provide the entire contents of the stack, then a smaller portion starting at the current
stack pointer is still useful because it provides the most recent function calls.

If your application uses global (extern or file static) data, then providing the corresponding
memory values enables you to view the variables within the debugger.

If you have local or global variables that point to heap data, then you might want to follow the
relevant pointers in the debugger to examine the data. To do this you must have provided the
contents of the heap to the Snapshot Viewer. Be aware that heaps can often occupy a large
memory range, so it might not be possible to capture the entire heap. The layout of the heap in
memory and the data structures that control heap allocation are often specific to the application or
the C library, see the relevant documentation for more information.

To debug at the disassembly level, the debugger must have access to the memory values where the
application code is located. It is often not necessary to capture the contents of the memory
containing the code, because identical data can often be extracted directly from the image using
processing tools such as fromelf. However, some complications to be aware of are:

• self-modifying code where the values in the image and memory can vary
• dynamic relocation of the memory address within the image at runtime.

Debug symbols

The debugger require debug information to display high-level information about your application,
for example:

• source code
• variable values and types
• structures
• call stack.

This information is stored by the compiler and linker within the application image, so you must
ensure that you have a local debug copy of the same image that you are running on your device.
The amount of debug information that is stored in the image, and therefore the resulting quality of
your debug session, can be affected by the debug and optimization settings passed to the compiler
and linker.

It is common to strip out as much of the debug information as possible when running an image on
an embedded device. In such cases, try to use the original unstripped image for debugging
purposes.

Related tasks
9.3 Connecting to the Snapshot Viewer on page 9-187.

Related references
9.2 Components of a Snapshot Viewer initialization file on page 9-184.
9.4 Considerations when creating debugger scripts for the Snapshot Viewer on page 9-188.
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9.2 Components of a Snapshot Viewer initialization file
Describes the groups and sections used to create a Snapshot Viewer initialization file.

The Snapshot Viewer initialization file is a simple text file consisting of one or more sections that
emulate the state of the original system. Each section uses an option=value structure.

 Note 

Currently DS-5 only supports DS-5 Debugger connections to the Snapshot Viewer using the
command-line console.

Before creating a Snapshot Viewer initialization file you must ensure that you have:

• One or more binary files containing a snapshot of the application that you want to analyze.

 Note 

The binary files must be formatted correctly in accordance with the following restrictions.

• Details of the type of processor.
• Details of the memory region addresses and offset values.
• Details of the last known register values.

To create a Snapshot Viewer initialization file, you must add grouped sections as required from
the following list and save the file with .ini for the file extension.

[global]
A section for global settings. The following option can be used:

core
The selected processor, for example, core=Cortex-M3.

[dump]
One or more sections for contiguous memory regions stored in a binary file. The
following options can be used:

file
Location of the binary file.

address
Memory start address for the specified region.

length
Length of the region. If none specified then the default is the rest of file from the
offset value.

offset
Offset of the specified region from the start of the file. If none specified then the
default is zero.
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[regs]
A section for standard ARM register names and values, for example, 0x0.

Banked registers can be explicitly specified using their names from the ARM Architecture
Reference Manual, for example, R13_fiq. In addition, the current mode is determined
from the Program Status Registers (PSRs), enabling register names without mode
suffixes to be identified with the appropriate banked registers.

The values of the PSRs and PC registers must always be provided. The values of other
registers are only required if it is intended to read them from the debugger.

Consider:

[regs]
CPSR=0x600000D2 ; IRQ
SP=0x8000
R14_irq=0x1234

Reading the registers named SP, R13, or R13_irq all yield the value 0x8000.

Reading the registers named LR, R14, or R14_irq all yield the value 0x1234.

 Note 

All registers are 32-bits.

Restrictions

The following restrictions apply:

• If you require a global section then it must be the first in the file.
• Consecutive bytes of memory must appear as consecutive bytes in one or more dump files.
• Address ranges representing memory regions must not overlap.

Examples 

; All sections are optional
[global]
core=Cortex-M3                ; Selected processor
; Location of a contiguous memory region stored in a dump file
[dump]
file="path/dumpfile1.bin"     ; File location (full path must be specified)
address=0x8000                ; Memory start address for specific region
length=0x0090                 ; Length of region
                              ; (optional, default is rest of file from offset)
; Location of another contiguous memory region stored in a dump file
[dump]
file="path/dumpfile2.bin"     ; File location
address=0x8090                ; Memory start address for specific region
offset=0x0024                 ; Offset of region from start of file
                              ; (optional, default is 0)
; ARM registers
[regs]
R0=0x000080C8
R1=0x0007C000
R2=0x0007C000
R3=0x0007C000
R4=0x00000363
R5=0x00008EEC
R6=0x00000000
R7=0x00000000
R8=0x00000000
R9=0xB3532737
R10=0x00008DE8
R11=0x00000000
R12=0x00000000
SP=0x0007FFF8
LR=0x0000808D
PC=0x000080B8
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Related concepts
9.1 About the Snapshot Viewer on page 9-182.

Related tasks
9.3 Connecting to the Snapshot Viewer on page 9-187.

Related references
9.4 Considerations when creating debugger scripts for the Snapshot Viewer on page 9-188.

Related information
ARM Architecture Reference Manual.
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9.3 Connecting to the Snapshot Viewer
Describes how to launch the debugger from a command-line console and connect to the Snapshot
Viewer.

A Snapshot Viewer provides a virtual target that you can use to analyze a snapshot of a known
system state using the debugger.

Prerequisites 

Before connecting you must ensure that you have a Snapshot Viewer initialization file containing
static information about a target at a specific point in time. For example, the contents of registers,
memory and processor state.

Procedure 

• Launch the debugger in the command-line console using --target command-line option to
pass the Snapshot Viewer initialization file to the debugger.

debugger --target=int.ini --script=int.cmm

 Note 

Currently DS-5 only supports DS-5 Debugger connections to the Snapshot Viewer using the
command-line console.

Related concepts
9.1 About the Snapshot Viewer on page 9-182.

Related tasks
1.4 Launching the debugger from the command-line console on page 1-21.

Related references
9.2 Components of a Snapshot Viewer initialization file on page 9-184.
9.4 Considerations when creating debugger scripts for the Snapshot Viewer on page 9-188.
1.6 DS-5 Debugger command-line console keyboard shortcuts on page 1-25.
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9.4 Considerations when creating debugger scripts for the Snapshot Viewer
Shows a typical example of an initialization file for use with the Snapshot Viewer.

The Snapshot Viewer uses an initialization file that emulates the state of the original system. The
symbols are loaded from the image using the data.load.elf command with the /nocode /
noreg arguments.

The snapshot data and registers are read-only and so the commands you can use are limited.

 Note 

Currently DS-5 only supports DS-5 Debugger connections to the Snapshot Viewer using the
command-line console.

The following example shows a script using CMM-style commands to analyze the contents of the
types_m3.axf image.

var.print "Connect and load symbols:"
system.up
data.load.elf "types_m3.axf"  /nocode /noreg
;Arrays and pointers to arrays
var.print ""
var.print "Arrays and pointers to arrays:"
var.print "Value of i_array[9999] is " i_array[9999]
var.print "Value of *(i_array+9999) is " *(i_array+9999)
var.print "Value of d_array[1][5] is " d_array[1][5]
var.print "Values of *((*d_array)+9) is " *((*d_array)+9)
var.print "Values of *((*d_array)) is " *((*d_array))
var.print "Value of &d_array[5][5] is " &d_array[5][5]
;Display 0x100 bytes from address in register PC
var.print ""
var.print "Display 0x100 bytes from address in register PC:"
data.dump r(PC)++0x100
;Structures and bit-fields
var.print ""
var.print "Structures and bit-fields:"
var.print "Value of values2.no is " values2.no
var.print "Value of ptr_values->no is " ptr_values->no
var.print "Value of values2.name is " values2.name
var.print "Value of ptr_values->name is " ptr_values->name
var.print "Value of values2.name[0] is " values2.name[0]
var.print "Value of (*ptr_values).name is " (*ptr_values).name
var.print "Value of values2.f1 is " values2.f1
var.print "Value of values2.f2 is " values2.f2
var.print "Value of ptr_values->f1 is " ptr_values->f1
var.print ""
var.print "Disconnect:"
system.down

Related concepts
9.1 About the Snapshot Viewer on page 9-182.

Related tasks
9.3 Connecting to the Snapshot Viewer on page 9-187.

Related references
9.2 Components of a Snapshot Viewer initialization file on page 9-184.
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Chapter 10
DS-5 Debug perspectives and views

Describes the DS-5 Debug perspective and related views in the Eclipse Integrated Development
Environment (IDE).
It contains the following:

• 10.1 App Console view on page 10-191.
• 10.2 ARM Asm Info view on page 10-193.
• 10.3 ARM assembler editor on page 10-194.
• 10.4 Breakpoints view on page 10-197.
• 10.5 C/C++ editor on page 10-201.
• 10.6 Commands view on page 10-204.
• 10.7 Debug Control view on page 10-207.
• 10.8 Disassembly view on page 10-211.
• 10.9 Events view on page 10-215.
• 10.10 Expressions view on page 10-216.
• 10.11 Functions view on page 10-219.
• 10.12 History view on page 10-221.
• 10.13 Memory view on page 10-223.
• 10.14 Modules view on page 10-227.
• 10.15 Registers view on page 10-231.
• 10.16 RTOS Data view on page 10-234.
• 10.17 Screen view on page 10-236.
• 10.18 Scripts view on page 10-239.
• 10.19 Target Console view on page 10-241.
• 10.20 Target view on page 10-242.
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• 10.21 Trace view on page 10-244.
• 10.22 Variables view on page 10-248.
• 10.23 Auto Refresh Properties dialog box on page 10-251.
• 10.24 Memory Exporter dialog box on page 10-252.
• 10.25 Memory Importer dialog box on page 10-253.
• 10.26 Fill Memory dialog box on page 10-254.
• 10.27 Export trace report dialog box on page 10-255.
• 10.28 Breakpoint properties dialog box on page 10-257.
• 10.29 Watchpoint properties dialog box on page 10-262.
• 10.30 Tracepoint properties dialog box on page 10-263.
• 10.31 Manage Signals dialog box on page 10-264.
• 10.32 Event Viewer dialog box on page 10-266.
• 10.33 Functions Filter dialog box on page 10-267.
• 10.34 Jython Script Parameters dialog box on page 10-268.
• 10.35 Debug Configurations - Connection tab on page 10-269.
• 10.36 Debug Configurations - Files tab on page 10-272.
• 10.37 Debug Configurations - Debugger tab on page 10-276.
• 10.38 Debug Configurations - OS Awareness tab on page 10-279.
• 10.39 Debug Configurations - Arguments tab on page 10-280.
• 10.40 Debug Configurations - Environment tab on page 10-282.
• 10.41 DTSL Configuration Editor dialog box on page 10-284.
• 10.42 Configuration database panel on page 10-286.
• 10.43 About the Remote System Explorer on page 10-288.
• 10.44 Remote Systems view on page 10-289.
• 10.45 Remote System Details view on page 10-290.
• 10.46 Target management terminal for serial and SSH connections on page 10-291.
• 10.47 Remote Scratchpad view on page 10-292.
• 10.48 Remote Systems terminal for SSH connections on page 10-293.
• 10.49 New Terminal Connection dialog box on page 10-294.
• 10.50 DS-5 Debugger menu and toolbar icons on page 10-296.
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10.1 App Console view
Describes the view content.

This view enables you to interact with the console I/O capabilities provided by the semihosting
implementation in the ARM C libraries. To use this feature, semihosting support must be enabled
in the debugger.

Figure 10-1  App Console view

 Note 

Default settings for this view are controlled by a DS-5 Debugger setting in the Preferences dialog
box. For example, default locations for specific files or the maximum number of lines to display.
You can access these settings by selecting Preferences from the Window menu.

Toolbar and context menu options

The following options are available from the toolbar or context menu:

Linked: context
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a specific connection. If the connection you want is
not shown in the drop-down list you might have to select it first in the Debug Control
view.

Save Console Buffer
Saves the contents of the App Console view to a text file.

Clear Console
Clears the contents of the App Console view.
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Scroll Lock
Enables or disables the automatic scrolling of messages in the App Console view.

View Menu
This menu contains the following option:

New App Console View
Displays a new instance of the App Console view.

Bring to Front for Write
If enabled, the debugger automatically changes the focus to this view when a
semihosting application prompts for input.

Copy
Copies the selected text.

Paste
Pastes text that you have previously copied. You can paste text only when the application
displays a semihosting prompt.

Select All
Selects all text.

Related references
7.1 About semihosting and top of memory on page 7-157.
7.2 Working with semihosting on page 7-158.
7.3 Enabling automatic semihosting support in the debugger on page 7-159.
10 DS-5 Debug perspectives and views on page 10-189.
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10.2 ARM Asm Info view
Describes the view content.

This view enables you to view more information on an ARM or Thumb® instruction or directive.

When you are editing assembly language source files (.s) using the ARM assembler editor, you
can access more information by:

1. selecting an instruction or directive
2. pressing F3.

The related documentation is displayed in the ARM Asm Info view. The ARM Asm Info view is
automatically displayed when you press F3.

Figure 10-2  ARM Asm Info view

To manually add this view:

1. Ensure that you are in the DS-5 Debug perspective.
2. Select Window > Show View > Other... to open the Show View dialog box.
3. Select the ARM Asm Info view from the DS-5 Debugger group.

Related references
10 DS-5 Debug perspectives and views on page 10-189.
10.3 ARM assembler editor on page 10-194.
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10.3 ARM assembler editor
Describes the view content.

The ARM assembler editor provides syntax highlighting, formatting of code and content
assistance for labels in ARM assembly language source files. This editor enables you to:

• edit source code
• view the syntax highlighting
• select an instruction or directive and press F3 to view the related ARM assembler reference

information
• use content assist for auto-completion
• set, remove, enable or disable a breakpoint
• set or remove a trace start or stop point
• set or remove a Streamline start or stop capture.

Figure 10-3  ARM assembler editor

In the left-hand margin of each editor tab you can find a marker bar that displays view markers
associated with specific lines in the source code.

To set a breakpoint, double-click in the marker bar at the position where you want to set the
breakpoint. To delete a breakpoint, double-click on the breakpoint marker.
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Action context menu options

Right-click in the marker bar, or the line number column if visible, to display the action context
menu for the ARM assembler editor. The options available include:

DS-5 Breakpoints menu
The following breakpoint options are available:

Toggle Breakpoint
Adds a new breakpoint, or remove a selected breakpoint.

Disable Breakpoint, Enable Breakpoint
Disables or enables the selected breakpoint.

Breakpoint Properties...
Displays the Breakpoint Properties dialog box for the selected breakpoint. This
enables you to control breakpoint activation.

Toggle Trace Start Point
Sets or removes a trace start point at the selected address.

Toggle Trace Stop Point
Sets or removes a trace stop point at the selected address.

Toggle Trace Trigger Point
Starts a trace trigger point at the selected address.

Toggle Streamline Start
Sets or removes a Streamline start capture at the selected address.

Toggle Streamline Stop
Sets or removes a Streamline stop capture at the selected address.

Default Breakpoint Type
The following breakpoint options are available:

C/C++ Breakpoints
Select to use the C/C++ perspective breakpoint scheme.

DS-5 C/C++ Breakpoint
Select to use the DS-5 Debug perspective breakpoint scheme. This is the default
for the DS-5 Debug perspective.

DS-5 breakpoint markers are red to distinguish them from the blue C/C++
perspective breakpoint markers.

 Note 

The Default Breakpoint Type selected causes the top-level Toggle Breakpoint menu in
this context menu and the double-click action in the left-hand ruler to toggle either CDT
Breakpoints or DS-5 Breakpoints. This menu is also available from the Run menu in the
main menu bar at the top of the C/C++, Debug, and DS-5 Debug perspectives.

The menu options under DS-5 Breakpoints do not honor this setting and always refer to
DS-5 Breakpoints.

Show Line Numbers
Show or hide line numbers.

For more information on the other options not listed here, see the dynamic help.

Related references
4.6 Setting an execution breakpoint on page 4-105.
4.7 Working with data watchpoints on page 4-107.
4.8 Setting a tracepoint on page 4-109.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
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4.12 Pending breakpoints and watchpoints on page 4-117.
4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
4.9 Setting Streamline start and stop points on page 4-110.
10 DS-5 Debug perspectives and views on page 10-189.
5.1 Examining the target execution environment on page 5-129.
5.2 Examining the call stack on page 5-131.
10.2 ARM Asm Info view on page 10-193.

10 DS-5 Debug perspectives and views
10.3 ARM assembler editor

ARM DUI0446P Copyright © 2010-2013 ARM. All rights reserved. 10-196
Non-Confidential



10.4 Breakpoints view
Describes the view content.

This view enables you to:

• disable, enable, or delete breakpoints and watchpoints
• import or export a list of breakpoints and watchpoints
• display the source file containing the line of code where the selected breakpoint is set
• display the disassembly where the selected breakpoint is set
• display the memory where the selected watchpoint is set
• delay breakpoint activation by setting properties for the breakpoint
• control the handling and output of messages for all Unix signals and processor exception

handlers
• change the access type for the selected watchpoint.

Figure 10-4  Breakpoints view

Syntax 

Syntax of a breakpoint entry

A breakpoint entry has the following syntax:

source_file:linenum @ function+offset address [#ID instruction_type, ignore = num/
count, nHits hits, (condition)]

where:

source_file:linenum
If the source file is available, the file name and line number in the file where the
breakpoint is set, threads.c:115.

function+offset
The name of the function in which the breakpoint is set and the number of bytes from the
start of the function. For example, accumulate()+52 shows that the breakpoint is 52
bytes from the start of the accumulate() function.
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address
The address where the breakpoint is set.

ID
The breakpoint ID number, #N. In some cases, such as in a for loop, a breakpoint might
comprise a number of sub-breakpoints. These are identified as N.n, where N is the
number of the parent. The description of a sub-breakpoint in this dialog box is shown as

main()+132sub-breakpoint ofmain()+132 @ threads.c:56 [#14 ARM]
(threads)

instruction_type
The type of instruction at the address of the breakpoint, ARM or Thumb.

ignore = num/count
An ignore count if set, where:

num equals count initially, and decrements on each pass until it reaches zero.

count is the value you have specified for the ignore count.

nHits hits
A counter that increments each time the breakpoint is hit. This is not displayed until the
first hit. If you set an ignore count, hits count does not start incrementing until the
ignore count reaches zero.

condition
The stop condition you have specified, (i==3).

Syntax 

Syntax of a watchpoint entry

A watchpoint entry has the following syntax:

name type[#ID]

where:

name
The name of the variable where the watchpoint is set.

type
The access type of the watchpoint.

ID
The watchpoint ID number.

Syntax 

Syntax of a tracepoint entry

A tracepoint entry has the following syntax:

source_file:linenum address

where:

address
The address where the tracepoint is set.

source_file:linenum
If the source file is available, the file name and line number in the file where the
tracepoint is set, 0x80000A72.
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Toolbar and context menu options

The following options are available from the toolbar or context menu:

Linked: context
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a specific connection. If the connection you want is
not shown in the drop-down list you might have to select it first in the Debug Control
view.

Delete
Removes the selected breakpoints and watchpoints.

Delete All
Removes all breakpoints and watchpoints.

Go to File
Displays the source file containing the line of code where the selected breakpoint is set.
This option is disabled for a watchpoint.

Go to Disassembly
Displays the disassembly where the selected breakpoint is set. This option is disabled for
a watchpoint.

Go to Memory
Displays the memory where the selected watchpoint is set. This option is disabled for a
breakpoint.

Skip All Breakpoints
Deactivates all breakpoints or watchpoints that are currently set. The debugger
remembers the enabled and disabled state of each breakpoint or watchpoint, and restores
that state when you reactivate them again.

Enable Breakpoints
Enables the selected breakpoints and watchpoints.

Disable Breakpoints
Disables the selected breakpoints and watchpoints.

Resolve
Re-evaluates the address of the selected breakpoint or watchpoint. If the address can be
resolved the breakpoint or watchpoint is set, otherwise it remains pending.

Properties...
Displays the Properties dialog box for the selected breakpoint, watchpoint or tracepoint.
This enables you to control activation or change the access type for the selected
watchpoint.

Copy
Copies the selected breakpoints and watchpoints. You can also use the standard keyboard
shortcut to do this.

Paste
Pastes the copied breakpoints and watchpoints. The breakpoints or watchpoints are
enabled by default. You can also use the standard keyboard shortcut to do this.

Select all
Selects all breakpoints or watchpoints. You can also use the standard keyboard shortcut
to do this.

View Menu
The following View Menu options are available:

New Breakpoints View
Displays a new instance of the Breakpoints view.

Export Breakpoints
Exports the current list of breakpoints and watchpoints to a file.

Import Breakpoints
Imports a list of breakpoints and watchpoints from a file.

Alphanumeric Sort
Sorts the list alphanumerically based on the string displayed in the view.
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Ordered Sort
Sorts the list in the order they have been set.

Manage Signals
Displays the Manage Signal dialog box.

Related concepts
6.7 About debugging multi-threaded applications on page 6-143.
6.8 About debugging shared libraries on page 6-144.
6.9 About debugging a Linux kernel on page 6-146.
6.10 About debugging Linux kernel modules on page 6-148.
6.12 About debugging TrustZone enabled targets on page 6-151.

Related references
4.6 Setting an execution breakpoint on page 4-105.
4.7 Working with data watchpoints on page 4-107.
4.8 Setting a tracepoint on page 4-109.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.12 Pending breakpoints and watchpoints on page 4-117.
4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
10 DS-5 Debug perspectives and views on page 10-189.
5.1 Examining the target execution environment on page 5-129.
5.2 Examining the call stack on page 5-131.
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10.5 C/C++ editor
Describes the view content.

This editor enables you to:

• Edit source code.
• View the syntax highlighting.
• View interactive help when hovering over C library functions. For example, printf().
• Use content assist (Ctrl+Space) for auto-completion.
• Set, remove, enable or disable a breakpoint.
• Set or remove a trace start or stop point.
• Set or remove a Streamline start or stop capture.

Figure 10-5  C/C++ editor

In the left-hand margin of each editor tab you can find a marker bar that displays view markers
associated with specific lines in the source code.

To set a breakpoint, double-click in the marker bar at the position where you want to set the
breakpoint. To delete a breakpoint, double-click on the breakpoint marker.

 Note 

If you have sub-breakpoints to a parent breakpoint then double-clicking on the marker also deletes
the related sub-breakpoints.

Action context menu options

Right-click in the marker bar, or the line number column if visible, to display the action context
menu for the C/C++ editor. The options available include:
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DS-5 Breakpoints menu
The following breakpoint options are available:

Toggle Breakpoint
Sets or removes a breakpoint at the selected address.

Toggle Hardware Breakpoint
Sets or removes a hardware breakpoint at the selected address.

Resolve Breakpoint
Resolves a pending breakpoint at the selected address.

Enable Breakpoint
Enables the breakpoint at the selected address.

Disable Breakpoint
Disables the breakpoint at the selected address.

Breakpoint Properties...
Displays the Breakpoint Properties dialog box for the selected breakpoint. This
enables you to control breakpoint activation.

Toggle Trace Start Point
Sets or removes a trace start point at the selected address.

Toggle Trace Stop Point
Sets or removes a trace stop point at the selected address.

Toggle Trace Trigger Point
Starts a trace trigger point at the selected address.

Toggle Streamline Start
Sets or removes a Streamline start capture at the selected address.

Toggle Streamline Stop
Sets or removes a Streamline stop capture at the selected address.

Default Breakpoint Type
The default type causes the top-level context menu entry, Toggle Breakpoint and the
double-click action in the marker bar to toggle either CDT Breakpoints or DS-5
Breakpoints. When using DS-5 Debugger you must select DS-5 C/C++ Breakpoint.
DS-5 breakpoint markers are red to distinguish them from the blue CDT breakpoint
markers.

Show Line Numbers
Shows or hides line numbers.

For more information on the other options not listed here, see the dynamic help.

Editor context menu

Right-click on any line of source to display the editor context menu for the C/C++ editor. The
following options are enabled when you connect to a target:

Set PC to Selection
Sets the PC to the address of the selected source line.

Run to Selection
Runs to the selected source line.
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Show in Disassembly
This option:

1. Opens a new instance of the Disassembly view.
2. Highlights the addresses and instructions associated with the selected source line. A

vertical bar and shaded highlight shows the related disassembly.

Figure 10-6  Show disassembly for selected source line

For more information on the other options not listed here, see the dynamic help.

Related references
4.6 Setting an execution breakpoint on page 4-105.
4.7 Working with data watchpoints on page 4-107.
4.8 Setting a tracepoint on page 4-109.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.12 Pending breakpoints and watchpoints on page 4-117.
4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
4.9 Setting Streamline start and stop points on page 4-110.
10 DS-5 Debug perspectives and views on page 10-189.
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10.6 Commands view
Describes the view content.

This view enables you to:

• Enter debugger commands.
• Run command scripts.
• See messages output by the debugger.
• Save the contents to a text file.

Figure 10-7  Commands view

You can execute DS-5 Debugger commands by entering the command in the field provided, then
click Submit.

 Note 

This feature is not available until you connect to a target.

You can also use content assist keyboard combinations provided by Eclipse to display a list of
DS-5 Debugger commands. Filtering is also possible by entering a partial command. For example,
enter pr followed by the content assist keyboard combination to search for the print command.

To display sub-commands, you must filter on the top level command. For example, enter info
followed by the content assist keyboard combination to display all the info sub-commands.

See DS-5 Debug perspective keyboard shortcuts in the Related reference section for details about
specific content assist keyboard combinations available in DS-5 Debugger.
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 Note 

Default settings for this view are controlled by a DS-5 Debugger setting in the Preferences dialog
box. For example, default locations for specific files or the maximum number of lines to display.
You can access these settings by selecting Preferences from the Window menu.

Toolbar and context menu options

The following options are available from the toolbar or context menu:

Linked: context
Links this view to the selected connection in theDebug Control view. This is the default.
Alternatively you can link the view to a specific connection. If the connection you want is
not shown in the drop-down list you might have to select it first in the Debug Control
view.

Save Console Buffer
Saves the contents of the Commands view to a text file.

Clear Console
Clears the contents of the Commands view.

Scroll Lock
Enables or disables the automatic scrolling of messages in the Commands view.

Script menu
A menu of options that enable you to manage and run command scripts:

<Recent scripts list>
A list of the recently run scripts.

<Recent favorites list>
A list of the scripts you have added to your favorites list.

Run Script File...
Displays the Open dialog box to select and run a script file.

Organize Favorites...
Displays the Scripts view, where you can organize your scripts.

Show Command History View
Displays the History view.

Copy
Copies the selected commands. You can also use the standard keyboard shortcut to do
this.

Paste
Pastes the command that you have previously copied into the Command field. You can
also use the standard keyboard shortcut to do this.

Select all
Selects all output in the Commands view. You can also use the standard keyboard
shortcut to do this.

Save the selected lines as a script...
Displays the Save As dialog box to save the selected commands to a script file.

When you click Save on the Save As dialog box, you are given the option to add the
script file to your favorites list. Click OK to add the script to your favorites list. Favorites
are displayed in the Scripts view.

Execute selected lines
Runs the selected commands.

New Commands View
Displays a new instance of the Commands view.

Related concepts
6.7 About debugging multi-threaded applications on page 6-143.
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6.8 About debugging shared libraries on page 6-144.
6.9 About debugging a Linux kernel on page 6-146.
6.10 About debugging Linux kernel modules on page 6-148.
6.12 About debugging TrustZone enabled targets on page 6-151.

Related references
1.5 DS-5 Debug perspective keyboard shortcuts on page 1-24.
10.7 Debug Control view on page 10-207.
4.6 Setting an execution breakpoint on page 4-105.
4.7 Working with data watchpoints on page 4-107.
4.8 Setting a tracepoint on page 4-109.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.12 Pending breakpoints and watchpoints on page 4-117.
4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
10 DS-5 Debug perspectives and views on page 10-189.

Related information
DS-5 Debugger commands.
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10.7 Debug Control view
Describes the view content.

This view enables you to:The Debug Control view displays target connections with a hierarchical
layout of running threads, user space processes, and related call stacks. Call stack information is
gathered when the system is stopped.

• view a list of running threads and user space processes as applicable
• view the call stack showing stack elements for each thread or process as applicable
• connect to and disconnect from a target
• load an application image on to the target
• load debug information when required by the debugger
• start the application
• run the application
• stop the application
• reset the target
• continue running the application after a breakpoint is hit or the target is suspended
• control the execution of an image by sequentially stepping through an application at the source

or instruction level
• modify the search paths used by the debugger when it executes any of the commands that look

up and display source code
• set the current working directory.

Figure 10-8  Set the current working directory

On Linux Kernel connections, the hierarchical nodes Active Threads and All Threads are
displayed. Active Threads shows each thread that is currently scheduled on a processor. All
Threads shows every thread in the system, including those presently scheduled on a processor.
On gdbserver connections, the hierarchical nodes Active Threads and All Threads are
displayed, but the scope is limited to the application under debug. Active Threads shows only
application threads that are currently scheduled. All Threads shows all application threads,
including ones that are currently scheduled.

Some of the views in the DS-5 Debug perspective are associated with the currently selected stack
frame. Other views are associated with editors or target connections. Each associated view is
synchronized accordingly.

Connection states are identified with different icons and background highlighting and are also
displayed in the view status bar. The following example shows a connection in the connected
state. If you want to add another configuration to the view then you can use the Debug Control
view menu.
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Figure 10-9  Debug Control view

Toolbar and context menu options

The following options are available from the toolbar or context menu:

Collapse All
Collapses all expanded stack trace configurations.

Connect to Target
Connects to the selected target using the same launch configuration settings as the
previous connection.

Disconnect from Target
Disconnects from the selected target.

Debug Configurations...
Displays the Debug Configurations dialog box, with the configuration for the selected
connection displayed.

Launch in background
Displays the Progress Information dialog box if disabled.

Remove Connection
Removes the selected target connection from the Debug Control view.

Debug from menu
This menu lists the different types of actions that you can perform when a connection is
established.

Reset menu
This menu lists the different types of reset that are available on your target.

Continue
Continues running the target.

 Note 

A Connect only connection might require setting the PC register to the start of the image
before running it.

Interrupt
Interrupts the target and stops the current application.
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Step Source Line Step Instruction
This option depends on the stepping mode selected:

• If source line mode is selected, steps at the source level including stepping into all
function calls where there is debug information.

• If instruction mode is selected, steps at the instruction level including stepping into all
function calls.

Step Over Source Line Step Over Instruction
This option depends on the stepping mode selected:

• If source line mode is selected, steps at the source level but stepping over all function
calls.

• If instruction mode is selected, steps at the instruction level but stepping over all
function calls.

Step Out
Continues running to the next instruction after the selected stack frame finishes.

Stepping by Source Line (press to step by instruction) Stepping by Instruction (press to step
by source line)

Toggles the stepping mode between source line and instruction.

The Disassembly view and the source editor view are automatically displayed when you
step in instruction mode.

The source editor view is automatically displayed when you step in source line mode. If
the target stops in code such as a shared library, and the corresponding source is not
available, then the source editor view is not displayed.

Step Out to This Frame
Continues running to the selected stack frame.

Change Connection Color
Enables you to change the color of the connection icon.

View Menu
The following options are available:

Add Configuration (without connecting)...
Displays the Add Launch Configuration dialog box. The dialog box lists any
configurations that are not already listed in the Debug Control view.

Select one or more configurations, then click OK. The selected configurations
are added to the Debug Control view, but remain unconnected.

Load...
Displays a dialog box where you can select whether to load an image, debug
information, an image and debug information, or additional debug information.
This option might be disabled for targets where this functionality is not
supported.

Set Working Directory...
Displays the Current Working Directory dialog box. Enter a new location for the
current working directory, then click OK.

Path Substitution...
Displays the Path Substitution and Edit Substitute Path dialog box.

Use the Edit Substitute Path dialog box to associate the image path with a source
file path on the host. Click OK. The image and host paths are added to the Path
Substitution dialog box. Click OK when finished.

Reset DS-5 Views to ‘Linked’
Resets DS-5 views to link to the selected connection in the Debug Control
view.
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Threads Presentation
Displays either a flat or hierarchical presentation of the threads in the stack trace.

Auto Expand Stack
Controls whether to automatically display an expanded stack when selecting a
connection.

Always Show Cores
Displays the available processors.

Related concepts
6.7 About debugging multi-threaded applications on page 6-143.
6.8 About debugging shared libraries on page 6-144.
6.9 About debugging a Linux kernel on page 6-146.
6.10 About debugging Linux kernel modules on page 6-148.
6.12 About debugging TrustZone enabled targets on page 6-151.

Related references
1.5 DS-5 Debug perspective keyboard shortcuts on page 1-24.
10.6 Commands view on page 10-204.
10 DS-5 Debug perspectives and views on page 10-189.
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10.8 Disassembly view
Describes the view content.

This view enables you to:

• See a disassembly of the target memory
• Specify the start address for the Disassembly view. You can use expressions in this field, $r3,

or drag and drop a register from the Registers view into the Disassembly view to see the
disassembly at the address in that register.

• Select the instruction set for the Disassembly view
• Create, delete, enable or disable a breakpoint or watchpoint at a memory location
• Freeze the selected view to prevent the values being updated by a running target.

Figure 10-10  Disassembly view

Gradient shading in the Disassembly view shows the start of each function.

Solid shading in the Disassembly view shows the instruction at the address of the current PC
register followed by any related instructions that correspond to the current source line.

In the left-hand margin of the Disassembly view you can find a marker bar that displays view
markers associated with specific locations in the disassembly code.
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To set a breakpoint, double-click in the marker bar at the position where you want to set the
breakpoint. To delete a breakpoint, double-click on the breakpoint marker.

 Note 

If you have sub-breakpoints to a parent breakpoint then double-clicking on the marker also deletes
the related sub-breakpoints.

Toolbar and context menu options

The following options are available from the toolbar or context menu:

Linked: context
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a specific connection. If the connection you want is
not shown in the drop-down list you might have to select it first in the Debug Control
view.

Back, Forward
Navigates through the history list.

<Next Instruction>
Navigates to the selected stack frame in the Debug Control view.

$LR
Navigates to the LR register.

expression
Navigates to the address specified by an expression. $PC+256.

address
Navigates to the specified address.

History
Addresses and expressions you specify in the Address field are added to the drop down
box, and persist until you clear the history list or exit Eclipse. If you want to keep an
expression for later use, add it to the Expressions view.

Address field
Enter the address where you want to view the disassembly.

Context menu options are available for editing this field.

Size field
The number of instructions to display before and after the location pointed to by the
program counter.

Context menu options are available for editing this field.

Search
Searches through debug information for symbols.

View Menu
The following View Menu options are available:

New Disassembly View
Displays a new instance of the Disassembly view.

Instruction Set
The instruction set to show in the view by default. Select one of the following:

[AUTO]
Auto detect the instruction set from the image.

ARM
ARM instruction set.

Thumb
Thumb instruction set.
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Byte Order
Selects the byte order of the memory. The default is Auto(LE).

Clear History
Clears the list of addresses and expressions in the History drop-down box.

Refresh
Refreshes the view.

Freeze Data
Toggles the freezing of data in the current view. This also disables and enables
the Size and Type fields and the Refresh option.

Action context menu
When you right-click in the left margin, the corresponding address and instruction is
selected and this context menu is displayed. The available options are:

Copy
Copies the selected address.

Paste
Pastes into the Address field the last address that you copied.

Select All
Selects all disassembly in the range specified by the Size field.

If you want to copy the selected lines of disassembly, you cannot use the Copy
option on this menu. Instead, use the copy keyboard shortcut for your host, Ctrl
+C on Windows.

Run to Selection
Runs to the selected address

Set PC to Selection
Sets the PC register to the selected address.

Show in source
If source code is available:

1. Opens the corresponding source file in the C/C++ source editor view, if
necessary.

2. Highlights the line of source associated with the selected address.

Show in registers
If the memory address corresponds to a register, then displays the Registers
view with the related register selected.

Show in functions
If the memory address corresponds to a function, then displays the Functions
view with the related function selected.

Toggle Breakpoint
Sets or removes a breakpoint at the selected address.

Toggle Hardware Breakpoint
Sets or removes a hardware breakpoint at the selected address.

Resolve Breakpoint
Resolves a pending breakpoint at the selected address.

Enable Breakpoint
Enables the breakpoint at the selected address.

Disable Breakpoint
Disables the breakpoint at the selected address.

Toggle Trace Start Point
Sets or removes a trace start point at the selected address.

Toggle Trace Stop Point
Sets or removes a trace stop point at the selected address.

Toggle Trace Trigger Point
Starts a trace trigger point at the selected address.
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Editing context menu options
The following options are available on the context menu when you select the Address
field or Size field for editing:

Cut
Copies and deletes the selected text.

Copy
Copies the selected text.

Paste
Pastes text that you previously cut or copied.

Delete
Deletes the selected text.

Undo
Reverts the last change.

Select All
Selects all the text.

Related concepts
6.7 About debugging multi-threaded applications on page 6-143.
6.8 About debugging shared libraries on page 6-144.
6.9 About debugging a Linux kernel on page 6-146.
6.10 About debugging Linux kernel modules on page 6-148.
6.12 About debugging TrustZone enabled targets on page 6-151.

Related references
4.6 Setting an execution breakpoint on page 4-105.
4.7 Working with data watchpoints on page 4-107.
4.8 Setting a tracepoint on page 4-109.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.12 Pending breakpoints and watchpoints on page 4-117.
4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
10 DS-5 Debug perspectives and views on page 10-189.
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10.9 Events view
Describes the view content.

This editor enables you to view the output generated by the System Trace Macrocell (STM) and
Instruction Trace Macrocell (ITM) events.

Data is captured from your application only when it runs. However, no data appears in the view
until you stop the application. You can stop the target by clicking the Interrupt icon in the Debug
Control view, or by entering the stop command in the Commands view. When your application
stops then any captured logging information is automatically appended to the open views.

The Configuration dialog enables you to select a trace source as well as masters and channels to
display in the view.

Toolbar and context menu options

The following options are available from the toolbar or context menu:

Linked: context
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a specific connection. If the connection you want is
not shown in the drop-down list you might have to select it first in the Debug Control
view.

Search by Timestamp
Searches through debug information for the nearest record to a given time stamp.

Configure Masters and Channels
Enables you to select a trace source in addition to masters and channels to display in the
view.

View Menu
The following View Menu options are available:

New Events View
Displays a new instance of the Events view.

Refresh
Refreshes the view.

Freeze Data
Toggles the freezing of data in the current view.

Display Format
Select the display format of the events.

Data
Displays data in the data column as hex values with widths depending
on the underlying data packets. This is the default.

Text
Displays character wrapped text data.

Related references
10 DS-5 Debug perspectives and views on page 10-189.
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10.10 Expressions view
Describes the view content.

This view enables you to:

• add expressions that you use regularly or that you want to examine in more detail
• edit, and delete expressions
• freeze the selected view to prevent the values being updated by a running target.

Figure 10-11  Expressions view

 Note 

If your expression contains side-effects when evaluating the expression, the results are
unpredictable. Side-effects occur when the state of one or more inputs to the expression changes
when the expression is evaluated.

For example, instead of x++ or x+=1 you must use x+1.

Right-click on the column headers to select the columns that you want displayed:

Name
An expression that resolves to an address, such as main+1024.

Value
The value of the expression. You can modify a value that has a white background. A
yellow background indicates the value has changed.

If you freeze the view, then you cannot change a value.

Type
The type associated with the value at the address identified by the expression.

Count
The number of array or pointer elements. You can edit a pointer element count.

Size
The size of expression in bits.
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Location
The address in hexadecimal identified by the expression, or the name of a register, if
expression contains only a single register name.

Access
The access type of expression.

All columns are displayed by default.

Toolbar and context menu options

The following options are available from the toolbar or context menu:

Linked: context
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a specific connection. If the connection you want is
not shown in the drop-down list you might have to select it first in the Debug Control
view.

Add New Expression
Adds a new expression to the expression list.

Remove Selected Expression
Removes the selected expression from the list.

Remove All Expressions
Removes all expressions from the list.

Search
Searches the data in the current view for an expression.

Cut
Copies and removes the selected expression.

Copy
Copies the selected expression.

To copy an expression for use in the Disassembly view or Memory view, first select the
expression in the Name field.

Paste
Pastes expressions that you have previously cut or copied.

Delete
Deletes the selected expression.

Select All
Selects all expressions.

Show in memory view
Where enabled, displays the Memory view with the address set to either:

• the value of the selected expression, if the expression translates to an address, the
address of an array, &name

• the location of the expression, the name of an array, name.

The memory size is set to the size of the variable, using the sizeof keyword.

Show in register view
If the expression corresponds to a register, then displays the Registers view with that
register selected. This might be:

• an expression that consists only of a single register, $pc
• a variable that is currently held in a register, For example, the variable t might be

held in register R5.

Send to Selection
Enables you to add register filters to an Expression view. Displays a sub menu that
enables you to add to a specific Expressions view.

10 DS-5 Debug perspectives and views
10.10 Expressions view

ARM DUI0446P Copyright © 2010-2013 ARM. All rights reserved. 10-217
Non-Confidential



format list
A list of formats you can use for the expression value.

View Menu
The following View Menu options are available:

New Expression View
Displays a new instance of the Expressions view.

Refresh
Refreshes the view.

Freeze Data
Toggles the freezing of data in the current view. This also disables and enables
the Refresh option.

Related references
4.6 Setting an execution breakpoint on page 4-105.
4.7 Working with data watchpoints on page 4-107.
4.8 Setting a tracepoint on page 4-109.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.12 Pending breakpoints and watchpoints on page 4-117.
4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
10 DS-5 Debug perspectives and views on page 10-189.
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10.11 Functions view
Describes the view content.

This view enables you to:

• see the ELF data associated with function symbols for all loaded images
• freeze the selected view to prevent the information being updated by a running target.

Figure 10-12  Functions view

Right-click on the column headers to select the columns that you want displayed:

Name
The name of the function.

Mangled Name
The C++ mangled name of the function.

Base Address
The function entry point.

Start Address
The start address of the function.

End Address
The end address of the function.

Size
The size of the function in bytes.

Compilation Unit
The location of the compilation unit containing the function.

Image
The location of the ELF image containing the function.

The Name, Start Address, End Address, Compilation Unit, and Image columns are
displayed by default.

Toolbar and context menu options

The following options are available from the toolbar or context menu:
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Linked: context
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a specific connection. If the connection you want is
not shown in the drop-down list you might have to select it first in the Debug Control
view.

Search
Searches the data in the current view for a function.

Copy
Copies the selected functions.

Select All
Selects all the functions in the view.

Run to Selection
Runs to the selected address

Set PC to Selection
Sets the PC register to the start address of the selected function.

Show in Source
If source code is available:

1. Opens the corresponding source file in the C/C++ editor view, if necessary.
2. Highlights the line of source associated with the selected address.

Show in Memory
Displays the Memory view starting at the address of the selected function.

Show in Disassembly
Displays the Disassembly view starting at the address of the selected function.

Toggle Breakpoint
Sets or removes a breakpoint at the selected address.

Resolve Breakpoint
Resolves a pending breakpoint at the selected address.

Enable Breakpoint
Enables the breakpoint at the selected address.

Disable Breakpoint
Disables the breakpoint at the selected address.

Toggle Trace Start Point
Sets or removes a trace start point at the selected address.

Toggle Trace Stop Point
Sets or removes a trace stop point at the selected address.

Toggle Trace Trigger Point
Starts a trace trigger point at the selected address.

View Menu
The following View Menu options are available:

New Function View
Displays a new instance of the Functions view.

Refresh
Refreshes the view.

Freeze Data
Toggles the freezing of data in the current view. This also disables or enables the
Refresh option.

Filter...
Displays the Filter dialog box.

Related references
10 DS-5 Debug perspectives and views on page 10-189.
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10.12 History view
Describes the view content.

This view enables you to:

• See a full list of commands generated during the current debug session.
• Clear the contents of the view.
• Save the selected commands to a script file. You can also add the script file to your favorites

list when you click Save. Favorites are displayed in the Scripts view.
• Enable or disable the automatic scrolling of messages in the History view.

Figure 10-13  History view

 Note 

Default settings for this view are controlled by a DS-5 Debugger setting in the Preferences dialog
box. For example, default locations for specific files. You can access these settings by selecting
Preferences from the Window menu.

Toolbar and context menu options

The following options are available from the toolbar or context menu:

Linked: context
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a specific connection. If the connection you want is
not shown in the drop-down list you might have to select it first in the Debug Control
view.
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Exports the selected lines as a script
Displays the Save As dialog box to save the selected commands to a script file.

When you click Save on the Save As dialog box, you are given the option to add the
script file to your favorites list. Click OK to add the script to your favorites list. Favorites
are displayed in the Scripts view.

Clear Console
Clears the contents of the History view.

Toggles Scroll Lock
Enables or disables the automatic scrolling of messages in the History view.

Copy
Copies the selected commands.

Select All
Selects all commands.

Save the selected lines as a script...
Displays the Save As dialog box to save the selected commands to a script file.

When you click Save on the Save As dialog box, you are given the option to add the
script file to your favorites list. Click OK to add the script to your favorites list. Favorites
are displayed in the Scripts view.

Execute selected lines
Runs the selected commands.

New History View
Displays a new instance of the History view.

Related references
10 DS-5 Debug perspectives and views on page 10-189.
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10.13 Memory view
Describes the view content.

This view enables you to:

• Modify memory content.
• Specify the start address for the Memory view, either as an absolute address or as an

expression, $pc. Previous entries are listed in the drop-down list. This list is cleared when you
exit Eclipse.

• Specify the display size of the Memory view in bytes, either as an offset value from the start
address, or as an address held in a register by dragging and dropping the register from the
Registers view into the Memory view.

• Specify the format of the memory cell values. The default is hexadecimal.
• Set the width of the memory cells in the Memory view. The default is four bytes.
• Display the ASCII character equivalent of the memory values.
• Freeze the selected view to prevent the view being updated by a running target.

Figure 10-14  Memory view

The Memory view only provides the facility to modify how memory is displayed in this view. It
is not possible to specify the use of byte, half-word, word or double read/write instructions to
access memory from the Memory view. To control the memory access width you can use:
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• the memory command to configure access widths for a region of memory, followed by the x
command to read memory according to those access widths and display the contents

• the memory set command to write to memory with an explicit access width.

Toolbar and context menu options

The following options are available from the toolbar or context menu:

Linked: context
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a specific connection. If the connection you want is
not shown in the drop-down list you might have to select it first in the Debug Control
view.

Back, Forward
Navigates through the history list.

History
Addresses and expressions you specify in the Address field are added to the drop down
box, and persist until you clear the history list or exit Eclipse. If you want to keep an
expression for later use, add it to the Expressions view.

Timed auto refresh is off Cannot update
This option opens a dialog box where you can specify refresh intervals:

• If timed auto refresh is off mode is selected, the auto refresh is off.
• If the cannot update mode is selected , the auto refresh is blocked.

Display Width
Click to cycle through the memory cell widths in the Memory view, or select a width
from the drop-down menu. The default is four bytes.

Format
Click to cycle through the memory cell formats, or select a format from the drop-down
menu. The default is hexadecimal.

Showing characters - click to hide the character display Not showing characters - click to
show the character display

Toggles the display of ASCII character equivalents for the memory values.
Address field

Enter the address where you want to start viewing the target memory. Alternatively, you
can enter an expression that evaluates to an address. $PC+256.

Addresses and expressions you specify are added to the drop down list, and persist until
you exit Eclipse. If you want to keep an expression for later use, add it to the
Expressions view.

Context menu options are available for editing this field.

Size field
The number of bytes to display.

Context menu options are available for editing this field.

Search
Searches through debug information for symbols.

View Menu
The following View Menu options are available:

New Memory View
Displays a new instance of the Memory view.

Show Tooltips
Toggles the display of tooltips on memory cell values.

Byte Order
Selects the byte order of the memory. The default is Auto(LE).
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Clear History
Clears the list of addresses and expressions in the History drop-down box.

Import Memory
Reads data from a file and writes it to memory.

Export Memory
Reads data from memory and writes it to a file.

Fill Memory
Writes a specific pattern of bytes to memory.

Refresh
Refreshes the view.

Freeze Data
Toggles the freezing of data in the current view. This also disables or enables the
Address and Size fields and the Refresh option.

Editing context menu options
The following options are available on the context menu when you select a memory cell
value, the Address field, or the Size field for editing:

Cut
Copies and deletes the selected value.

Copy
Copies the selected value.

Paste
Pastes a value that you have previously cut or copied into the selected memory
cell or field.

Delete
Deletes the selected value.

Undo
Reverts the last change you made to the selected memory cell or field. This is
disabled for the Address field.

Select All
Selects all the address.

Toggle Breakpoint
Sets or removes a breakpoint at the selected address.

Resolve Breakpoint
Resolves a pending breakpoint at the selected address.

Enable Breakpoint
Enables the breakpoint at the selected address.

Disable Breakpoint
Disables the breakpoint at the selected address.

Toggle Trace Start Point
Sets or removes a trace start point at the selected address.

Toggle Trace Stop Point
Sets or removes a trace stop point at the selected address.

Toggle Trace Trigger Point
Starts a trace trigger point at the selected address.

Related concepts
6.7 About debugging multi-threaded applications on page 6-143.
6.8 About debugging shared libraries on page 6-144.
6.9 About debugging a Linux kernel on page 6-146.
6.10 About debugging Linux kernel modules on page 6-148.
6.12 About debugging TrustZone enabled targets on page 6-151.

Related references
4.6 Setting an execution breakpoint on page 4-105.
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4.7 Working with data watchpoints on page 4-107.
4.8 Setting a tracepoint on page 4-109.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.12 Pending breakpoints and watchpoints on page 4-117.
4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
10 DS-5 Debug perspectives and views on page 10-189.
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10.14 Modules view
Describes the view content.

This view is only populated when connected to a Linux target. It enables you to:

• see a tabular view of the shared libraries used by the application
• see a tabular view of dynamically loaded Operating System (OS) modules
• load and unload debug information for a specific module or shared library.
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Figure 10-15  Modules view showing shared libraries

Figure 10-16  Modules view showing operating system modules

 Note 
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A connection must be established and OS support enabled within the debugger before a loadable
module can be detected. OS support is automatically enabled when a Linux kernel image is loaded
into the debugger. However, you can manually control this by using the set os command.

Right-click on the column headers to select the columns that you want displayed:

Name
Displays the name and location of the component on the target.

Symbols
Displays whether the symbols are currently loaded for each object.

Address
Displays the load address of the object.

Size
Displays the size of the object.

Kind
Displays the component type. For example, shared library or OS module.

Host File
Displays the name and location of the component on the host workstation.

The Name, Symbols, Address, Kind, and Host File columns are displayed by default.

Toolbar and context menu options

The following options are available from the toolbar or context menu:

Linked: context
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a specific connection. If the connection you want is
not shown in the drop-down list you might have to select it first in the Debug Control
view.

Refresh
Refreshes the view.

Copy
Copies the selected data.

Select All
Selects all the displayed data.

Load Symbols
Loads debug information into the debugger from the source file displayed in the Host File
column. This option is disabled if the host file is unknown. before the file is loaded.

Add Symbol File...
Opens a dialog box where you can select a file from the host workstation containing the
debug information required by the debugger.

Discard Symbols
Discards debug information relating to the selected file.

Show in Memory
Displays the Memory view starting at the load address of the selected object.

Show in Disassembly
Displays the Disassembly view starting at the load address of the selected object.

Related concepts
6.7 About debugging multi-threaded applications on page 6-143.
6.8 About debugging shared libraries on page 6-144.
6.9 About debugging a Linux kernel on page 6-146.
6.10 About debugging Linux kernel modules on page 6-148.
6.12 About debugging TrustZone enabled targets on page 6-151.
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Related references
10 DS-5 Debug perspectives and views on page 10-189.
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10.15 Registers view
Describes the view content.

This view enables you to:

• See the contents of target registers.
• Change the values for registers that have write access. When a register value changes, the

register value background changes to yellow.
• Change the display format of register values. The Program Status Registers (PSRs) also enable

you to set the format using individual bits.
• Freeze the selected view to prevent the values being updated by a running target.
• Drag and drop an address held in a register, such as R3, from the Registers view either into the

Memory view to see the memory at that address, or into the Disassembly view to disassemble
from that address.

Figure 10-17  Registers view

Right-click on the column headers to select the columns that you want displayed:

Name
The name of the register.

Use $register_name to reference a register. To refer to a register that has bitfields,
such as a PSR, specify $register_name.bitfield_name. For example, to print the
value of the M bitfield of $CPSR, enter the following command in the Commands view:

print $CPSR.M
$1 = USR

Value
The value of the register. A shaded background indicates the value has changed.

If you freeze the view, then you cannot change a register value.

Type
The type of the register value.
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Count
The number of array or pointer elements.

Size
The size of the register in bits.

Location
The name of the register or the bitmap of the bitfield of a PSR. For example, bitfield M of
the CPSR is displayed as $CPSR[0..4].

The Name, Value, and Size columns are displayed by default.

Toolbar and context menu options

The following options are available from the toolbar or context menu:

Linked: context
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a specific connection. If the connection you want is
not shown in the drop-down list you might have to select it first in the Debug Control
view.

Search
Searches the data in the current view for a register.

Copy
Copies the selected registers. To copy the bitfields of a PSR, you must first expand the
PSR.

This is useful if you want to copy the selected registers to a text editor and compare the
values when execution stops at another location.

Select All
Selects all registers currently expanded in the view.

Show Memory Pointed to By register_name
Where enabled, displays the Memory view starting at the address held in the register.

Show Disassembly Pointed to By register_name
Where enabled, displays the Disassembly view starting at the address held in the register.

Send to Selection
Enables you to add register filters to an Expression view. Displays a sub menu that
enables you to add to a specific Expressions view.

format list
A list of formats you can use for the register values. The default is Hexadecimal.

View Menu
The following View Menu options are available:

New Register View
Creates a new instance of the Registers view.

Refresh
Refreshes the view.

Freeze Data
Toggles the freezing of data in the current view. This also disables or enables the
Refresh option.

Editing context menu options
The following options are available on the context menu when you select a register value
for editing:

Cut
Copies and deletes the selected value.

Copy
Copies the selected value.
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Paste
Pastes a value that you have previously cut or copied into the selected register
value.

Delete
Deletes the selected value.

Undo
Reverts the last change you made to the selected value.

Related concepts
6.7 About debugging multi-threaded applications on page 6-143.
6.8 About debugging shared libraries on page 6-144.
6.9 About debugging a Linux kernel on page 6-146.
6.10 About debugging Linux kernel modules on page 6-148.
6.12 About debugging TrustZone enabled targets on page 6-151.

Related references
4.6 Setting an execution breakpoint on page 4-105.
4.7 Working with data watchpoints on page 4-107.
4.8 Setting a tracepoint on page 4-109.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.12 Pending breakpoints and watchpoints on page 4-117.
4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
10 DS-5 Debug perspectives and views on page 10-189.
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10.16 RTOS Data view
Describes the view content.

This view enables you to display system information about the Operating System (OS).

 Note 

Options and rows in the RTOS Data view are dependent on the type of table that you select.

Multiple tables are available in the drop-down box and its content is controlled by the OS support
currently active.

Examples 

The following is an example showing tasks specific to the current OS.

Figure 10-18  Typical RTOS view for a RTX table

Toolbar and context menu options

The following options are available from the toolbar or context menu:

Linked: context
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a specific connection. If the connection you want is
not shown in the drop-down list you might have to select it first in the Debug Control
view.

Show linked data in other Data views
Shows selected data in a view that is linked to another view.

View Menu
This menu contains the following option:

New RTOS Data View
Displays a new instance of the RTOS Data view.

Refresh
Refreshes the view.

Freeze Data
Toggles the freezing of data in the current view. Also, the value of a variable
cannot change if the data is frozen.
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Editing context menu options
The following options are available on the context menu when you select a variable value
for editing:

Copy
Copies the selected value.

Select All
Selects all text.
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10.17 Screen view
Describes the view content.

This view enables you to:

• See the contents of the screen buffer on the target. This view only updates when the target
stops.

• Set the screen buffer parameters appropriate for the target. :

Figure 10-19  Screen buffer parameters for the Fireworks example running on a
BeagleBoard

• Freeze the selected view to prevent the screen display being updated by the running target
when it next stops.
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Figure 10-20  Screen view

Toolbar options

The following toolbar options are available:

Linked: context
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a specific connection. If the connection you want is
not shown in the drop-down list you might have to select it first in the Debug Control
view.

Timed auto refresh is off Cannot update
This option opens a dialog box where you can specify refresh intervals:

• If timed auto refresh is off mode is selected, the auto refresh is off.
• If the cannot update mode is selected , the auto refresh is blocked.

Refresh
Refreshes the view.

Set Screen Buffer Parameters
Displays the Screen Buffer Parameters dialog box. The dialog box contains the following
parameters:

Base Address
Sets the base address of the screen buffer.

Screen Width
Sets the width of the screen in pixels.
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Screen Height
Sets the height of the screen in pixels.

Scan Line Alignment
Sets the byte alignment required for each scan line.

Pixel Type
Selects the pixel type.

Pixel Byte Order
Selects the byte order of the pixels within the data.

Click Apply to save the settings and close the dialog box.

Click Cancel to close the dialog box without saving.

Freeze Data
Toggles the freezing of data in the current view. This also disables or enables the Refresh
option.

New Screen Buffer View
Creates a new instance of the Screen view.

The Screen view is not visible by default. To add this view:

1. Ensure that you are in the DS-5 Debug perspective.
2. Select Window > Show View to open the Show View dialog box.
3. Select Screen view.

Related references
10 DS-5 Debug perspectives and views on page 10-189.
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10.18 Scripts view
Describes the view content.

This view contains your favorite scripts. You can run, edit, or remove one or more of your favorite
scripts. Scripts can be added to this view when you save commands in the History view.

Multiple selections are executed in the order listed in the view. To change the order, remove the
scripts from the view and import them in the required order.

Figure 10-21  Scripts view

 Note 

Default settings for this view are controlled by a DS-5 Debugger setting in the Preferences dialog
box. For example, default locations for script files. You can access these settings by selecting
Preferences from the Window menu.

Toolbar and context menu options

The following options are available from the toolbar or context menu:

Creates a new script
Creates a new empty script. To specify the script contents after it is created, select the
script and click Edit Selected Script.

Execute Selected Scripts
Runs the selected scripts. If you select multiple scripts, the debugger runs them in the
order listed in the Scripts view.

Edit Selected Scripts
Enables you to edit the selected scripts. The scripts are opened in the C/C++ editor view.

Delete Selected Scripts
Deletes the selected scripts from the favorites list. You are also prompted to delete the
script from the file system.

Import Script...
Imports a script file and add it to the favorites list.

Jython Script Parameters
Enables you to add parameters to the script.

 Note 

This icon enables when a script is selected.
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Cut
Copies and removes the selected script filename. You are also prompted to delete the
script from file system.

Copy
Copies the selected script.

Paste
Pastes a script filename that you have previously cut or copied.

If you deleted the file from the file system as part of a cut operation, the file contents are
not restored. You must edit the file to add new commands.

If you did not delete the file as part of a cut operation, the debugger links the filename to
the file in the file system.

Delete
Deletes the selected script from the favorites list. You are also prompted to delete the
script from file system.

Select All
Selects all script files.

Related references
10 DS-5 Debug perspectives and views on page 10-189.

10 DS-5 Debug perspectives and views
10.18 Scripts view

ARM DUI0446P Copyright © 2010-2013 ARM. All rights reserved. 10-240
Non-Confidential



10.19 Target Console view
Describes the view content.

This view enables you to receive messages from the target setup scripts.

 Note 

Default settings for this view are controlled by a DS-5 Debugger setting in the Preferences dialog
box. For example, default locations for specific files or the maximum number of lines to display.
You can access these settings by selecting Preferences from the Window menu.

Toolbar and context menu options

The following options are available from the toolbar or context menu:

Linked: context
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a specific connection. If the connection you want is
not shown in the drop-down list you might have to select it first in the Debug Control
view.

Save Console Buffer
Saves the contents of the Target Console view to a text file.

Clear Console
Clears the contents of the Target Console view.

Scroll Lock
Enables or disables the automatic scrolling of messages in the Target Console view.

View Menu
This menu contains the following option:

New Target Console
Displays a new instance of the Target Console view.

Bring to Front for Write
If enabled, the debugger automatically changes the focus to this view when a
target script prompts for input.

Copy
Copies the selected text.

Paste
Pastes text that you have previously copied.

Select All
Selects all text.

Related references
10 DS-5 Debug perspectives and views on page 10-189.

10 DS-5 Debug perspectives and views
10.19 Target Console view

ARM DUI0446P Copyright © 2010-2013 ARM. All rights reserved. 10-241
Non-Confidential



10.20 Target view
Describes the view content.

This view enables you to examine the debug capabilities supported by the target, such as:

• breakpoint types supported
• reset types supported
• memory access types supported.

All capabilities are read-only.

Figure 10-22  Target view

Right-click on the column headers to select the columns that you want displayed:

Name
The name of the target capability.

Value
The value of the target capability.

Key
The name of the target capability. This is used by some commands in the Commands
view.

Description
A brief description of the target capability.

The Name, Value, and Description columns are displayed by default.

The Target view is not visible by default. To add this view:

1. Ensure that you are in the DS-5 Debug perspective.
2. Select Window > Show View to open the Show View dialog box.
3. Select Target view.
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Toolbar and context menu options

The following options are available from the toolbar or context menu:

Linked: context
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a specific connection. If the connection you want is
not shown in the drop-down list you might have to select it first in the Debug Control
view.

Refresh the Target Capabilities
Refreshes the view.

Copy
Copies the selected capabilities. To copy the capabilities in a group such as Memory
capabilities, you must first expand that group.

This is useful if you want to copy the selected capabilities to a text editor and save them
for future reference.

Select All
Selects all capabilities currently expanded in the view.

Related references
10 DS-5 Debug perspectives and views on page 10-189.
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10.21 Trace view
Describes the view content.

When the trace has been captured the debugger extracts the information from the trace stream and
decompresses it to provide a full disassembly, with symbols, of the executed code.

This view shows a graphical navigation chart that displays function executions with a navigational
timeline. In addition, the disassembly trace shows function calls with associated addresses and if
selected, instructions. Clicking on a specific time in the chart synchronizes the Disassembly view.

In the left-hand column of the chart, percentages are shown for each function of the total trace. For
example, if a total of 1000 instructions are executed and 300 of these instructions are associated
with myFunction() then this function is displayed with 30%.

In the navigational timeline, the color coding is a "heat" map showing the executed instructions
and the amount of instructions each function executes in each timeline. The darker red color
showing more instructions and the lighter yellow color showing less instructions. At a scale of 1:1
however, the color scheme changes to display memory access instructions as a darker red color,
branch instructions as a medium orange color, and all the other instructions as a lighter green
color.
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Figure 10-23  Trace view with a scale of 1:1

The Trace view might not be visible by default. To add this view:

1. Ensure that you are in the DS-5 Debug perspective.
2. Select Window > Show View to open the Show View dialog box.
3. Select Trace view.

The Trace view contains several tabs:

• Trace tab showing the graphical timeline and disassembly.

Right-click on the column headers to select the columns that you want displayed.

The Breakpoint, Index, Address, Opcode, Info and Disassembly columns are displayed
by default.
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Toolbar and context menu options

The following options are available from the toolbar or context menu:

Linked: context
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a specific connection or processor in an Symmetric
MultiProcessing (SMP) connection. If the connection you want is not shown in the drop-
down list you might have to select it first in the Debug Control view.

Show Next Match
Moves the focus of the navigation chart and disassembly trace to the next matching
occurrence for the selected function or instruction.

Show Previous Match
Moves the focus of the navigation chart and disassembly trace to the previous matching
occurrence for the selected function or instruction.

Don’t mark other occurrences - click to start marking, Mark other occurrences - click to
stop marking

When function trace is selected, marks all occurrences of the selected function with a
shaded highlight. This is disabled when instruction trace is selected.

Clear Trace
Clears the raw trace data that is currently contained in the trace buffer and the trace view.

Showing instruction trace - click to switch to functions, Showing function trace - click to
switch to instructions

Toggles the disassembly trace between instruction trace or function trace.
Export Trace Report

Displays the Export Trace Report dialog box to save the trace data to a file.
Home

Where enabled, moves the trace view to the beginning of the trace buffer. Changes might
not be visible if the trace buffer is too small.

Page Back
Where enabled, moves the trace view back one page. You can change the page size by
modifying the Set Maximum Instruction Depth setting.

Page Forward
Where enabled, moves the trace view forward one page. You can change the page size by
modifying the Set Maximum Instruction Depth setting.

End
Where enabled, moves the trace view to the end of the trace buffer. Changes might not be
visible if the trace buffer is too small.

Switch between navigation resolutions
Changes the timeline resolution in the navigation chart.

Switch between alternate views
Changes the view to display the navigation chart, disassembly trace or both.

Focus Here
At the top of the list, displays the function being executed in the selected time slot. The
remaining functions are listed in the order that they are executed after the selected point
in time. Any functions that do not appear after that point in time are placed at the bottom
and ordered by total time.

Order By Total Time
Displays the functions ordered by the total time spent within the function. This is the
default ordering.

View Menu
The following View Menu options are available:

New Trace View
Displays a new instance of the Trace view.
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Set Trace Page Size...
Displays a dialog box where you can enter the maximum number of instructions
to display in the disassembly trace. The number must be within the range of one
thousand to one million instructions.

Find Trace Trigger Event
Enables you to search for trigger events in the trace capture buffer.

Find Timestamp...
Displays a dialog box where you can enter either a numeric timestamp as a 64 bit
value or in the h:m:s format.

DTSL Options...
Displays a dialog box where you can add, edit or choose a DTSL configuration.

 Note 

This will clear the trace buffer.

Refresh
Discards all the data in the view and rereads it from the current trace buffer.

Freeze Data
Toggles the freezing of data in the current view.

Trace Filter Settings...
Displays a dialog box where you can select the trace record types that you want
to see in the Trace view.

Related references
10 DS-5 Debug perspectives and views on page 10-189.
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10.22 Variables view
Describes the view content.

This view enables you to:

• see the contents of variables that are currently in scope
• change the values for variables that are currently in scope
• freeze the selected view to prevent the values being updated by a running target.

Figure 10-24  Variables view

Right-click on the column headers to select the columns that you want displayed:

Name
The name of the variable.

Value
The value of the variable.

Read-only values are displayed with a grey background. Any other color means that you
can edit the value.

A value that you can edit is initially shown with a white background. If the value
changes, either by performing a debug action such as stepping or by you editing the value
directly, the background changes to yellow.

If you freeze the view, then you cannot change a value.

Type
The type of the variable.

Count
The number of array or pointer elements.

Size
The size of the variable in bits.

Location
The address of the variable.

All columns are displayed by default.
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Toolbar and context menu options

The following options are available from the toolbar or context menu:

Linked: context
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a specific connection. If the connection you want is
not shown in the drop-down list you might have to select it first in the Debug Control
view.

Search
Searches the data in the current view for a variable.

Copy
Copies the selected variables. To copy the contents of an item such as a structure or an
array, you must first expand that item.

This is useful if you want to copy the selected variables to a text editor and compare the
values when execution stops at another location.

Select All
Selects all capabilities currently expanded in the view.

Show in Memory
Where enabled, displays the Memory view with the address set to either:

• the value of the selected variable, if the variable translates to an address, the address
of an array, &name

• the location of the variable, the name of an array, name.

The memory size is set to the size of the variable, using the sizeof keyword.

Show in Registers
If the selected variable is currently held in a register, then displays the Registers view
with that register selected. For example, the variable t might be held in register R5.

Show Dereference in Memory
If the selected variable is a pointer, then displays the Memory view with the address
where the variable is pointing to in memory, selected.

Send to Selection
Enables you to add variable filters to an Expressions view. Displays a sub menu that
enables you to add to a specific Expressions view.

format list
A list of formats you can use for the variable value. The default is Unsigned Decimal.

View Menu
The following View Menu options are available:

New Variable View
Displays a new instance of the Variables view.

Refresh
Refreshes the view.

Freeze Data
Toggles the freezing of data in the current view. This also disables or enables the
Refresh Variable View option. Also, you cannot modify the value of a variable
if the data is frozen.

If you freeze the data before you expand an item, such as an array, for the first
time, the view might show Pending... items. Unfreeze the data to see the
items.

Editing context menu options
The following options are available on the context menu when you select a variable value
for editing:
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Cut
Copies and deletes the selected value.

Copy
Copies the selected value.

Paste
Pastes a value that you have previously cut or copied into the selected variable
value.

Delete
Deletes the selected value.

Undo
Reverts the last change you made to the selected value.

Right to left reading order
Sets the reading order for the selected variable value to be left or right justified.

Show unicode control characters
Shows any unicode control characters in the selected variable value.

Insert unicode control character
Selects the unicode control character to insert into the selected variable value.

Related concepts
6.7 About debugging multi-threaded applications on page 6-143.
6.8 About debugging shared libraries on page 6-144.
6.9 About debugging a Linux kernel on page 6-146.
6.10 About debugging Linux kernel modules on page 6-148.
6.12 About debugging TrustZone enabled targets on page 6-151.

Related references
4.6 Setting an execution breakpoint on page 4-105.
4.7 Working with data watchpoints on page 4-107.
4.8 Setting a tracepoint on page 4-109.
4.10 Setting a conditional breakpoint on page 4-111.
4.11 Setting a breakpoint on a specific thread on page 4-114.
4.12 Pending breakpoints and watchpoints on page 4-117.
4.13 Exporting DS-5 breakpoint settings to a file on page 4-118.
4.14 Importing DS-5 breakpoint settings from a file on page 4-119.
10 DS-5 Debug perspectives and views on page 10-189.
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10.23 Auto Refresh Properties dialog box
Describes the dialog box content.

The dialog box enables you to modify the update intervals settings.

Refresh Off/Blocked
Enables you to modify the stop/block auto refresh.

Update Interval
Specifies the auto refresh interval in seconds.

Update When
Enables you to specify when you want auto refresh to update:

Running
Refreshes the Memory view while the target is running.

Stopped
Refreshes the Memory view while the target is stopped.

Always
Always refreshes the Memory view.

 Note 

When using the Running or Always selections, the Memory and Screen views are only updated
if the target supports access to that memory when running. For example, some CoreSight targets
support access to physical memory at any time via the Debug Access Port (DAP) to the Advanced
High-performance Bus Access Port (AHB-AP) bridge. In those cases, add the AHB: prefix to the
address selected in the Memory or Screen views. This type of access bypasses any cache on the
CPU core, so the memory content returned might be different to the value that the core reads.

Figure 10-25  Auto Refresh properties dialog box
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10.24 Memory Exporter dialog box
Describes the dialog box content.

This dialog box enables you to generate a a text file containing the data from a specific region of
memory.

Memory Bounds
Specifies the memory region:

Start Address
Specifies the start address for the memory.

End Address
Specifies the inclusive end address for the memory.

Length in Bytes
Specifies the number of bytes.

Output Format
Specifies the output format:

• Binary. This is the default.
• Intel Hex-32.
• Motorola 32-bit (S-records).
• Byte oriented hexadecimal (Verilog Memory Model).

Export Filename
Enter the current location of the output file in the field provided or click on:

• File System... to locate the output file in an external folder
• Workspace... to locate the output file in a workspace project.

Figure 10-26  Memory Exporter dialog box
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10.25 Memory Importer dialog box
Describes the dialog box content.

This dialog box enables you to generate a a text file containing the data from a specific region of
memory.

Offset to Embedded Address
Specifies an offset that is added to all addresses in the image prior to writing to memory.
Some image formats do not contain embedded addresses and in this case the offset is the
absolute address where the image is restored

Memory Limit
Enables you to define a specific region of memory that you want to import:

Limit to memory range
Select to specify an address range.

Start
Specifies the minimum address that can be written to. Any data prior to this
address is not written. If no address is given then the default is address zero.

End
Specifies the maximum address that can be written to. Any data after this
address is not written. If no address is given then the default is the end of the
address space.

Import Filename
Select Import file as binary image if the file format is a binary file.

Enter the current location of the output file in the field provided or click on:

• File System... to locate the output file in an external folder
• Workspace... to locate the output file in a workspace project.

Figure 10-27  Memory Importer dialog box
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10.26 Fill Memory dialog box
Describes the dialog box content.

This dialog box enables you to write a specific pattern of bytes to memory.

Memory Bounds
Specifies the memory region:

Start Address
Specifies the start address for the memory.

End Address
Specifies the inclusive end address for the memory.

Length in Bytes
Specifies the number of bytes.

Data Pattern
Specifles the fill size and pattern of bytes.

Fill size
Specifies the fill size in bytes.

Pattern
Enter the specific pattern of bytes.

Figure 10-28  Memory Fill dialog box
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10.27 Export trace report dialog box
Describes the dialog box content.

This dialog box enables you to generate a trace report.

Report Name
Enter the report location and name.

Base Filename
Enter the report name.

Output Folder
Enter the report folder location.

Browse
Selects the report location in the file system.

Include core
Enables you to add the core name in the report filename.

Include date time stamp
Enables you to add the date time stamp to the report filename.

Select source for trace report
Selects the required trace data:

Use trace view as report source
Instructions that are currently visible in the trace view.

Use trace buffer as report source
Trace data that is currently contained in the trace buffer.

 Note 

When specifying a range, ensure that the range is large enough otherwise you
might not get any trace output. This is due to the trace packing format used in the
buffer.

Report Format
Configures the report:

Output Format
Selects the output format.

Include column headers
Enables you to add column headers in the first line of the report.

Select columns to export
Enables you to filter the trace data in the report.

Record Filters
Enables or disables trace filters.

Check All
Enables you to select all the trace filters.

Uncheck All
Enables you to unselect all the trace filters.
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Figure 10-29  Export trace report dialog box
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10.28 Breakpoint properties dialog box
Describes the dialog box content.

This dialog box enables you to:

• display the properties of a selected breakpoint
• set a conditional expression for a specific breakpoint
• set an ignore counter for a specific breakpoint
• specify a script file to run when the selected breakpoint is hit
• enable the debugger to automatically continue running on completion of all the breakpoint

actions
• assign a breakpoint action to a specific thread or processor, if available.
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Figure 10-30  Breakpoint properties dialog box

Breakpoint information

The breakpoint information shows the basic properties of a breakpoint:
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Description
A description of the breakpoint as displayed in the Breakpoints view. This comprises:

• The name of the function in which the breakpoint is set and the number of bytes from
the start of the function. For example, accumulate()+52 shows that the breakpoint
is 52 bytes from the start of the accumulate() function.

• If the source file is available, the file name and line number in the file where the
breakpoint is set, threads.c:115.

• A breakpoint ID number, #N. In some cases, such as in a for loop, a breakpoint
might comprise a number of sub-breakpoints. These are identified as N.n, where N is
the number of the parent. The description of a sub-breakpoint in this dialog box is
shown as

main()+132sub-breakpoint ofmain()+132 @ threads.c:56 [#14 ARM]
(threads)

• The type of instruction at the address of the breakpoint, ARM or Thumb.
• An ignore count, if set. The display format is:

ignore = num/count

num equals count initially, and decrements on each pass until it reaches zero.

count is the value you have specified for the ignore count.
• A hits count that increments each time the breakpoint is hit. This is not displayed

until the first hit. If you set an ignore count, hits count does not start incrementing
until the ignore count reaches zero.

• The stop condition you have specified, (i==3).
• The name of the image.

:

accumulate()+52 @ threads.c:115 [#1 ARM, ignore = 3/3, 3 hits, (i==3)] 
(threads)

Location
The location of the source file containing the address where the breakpoint is set, for
example:

C:/Myprojects/Eclipse/workspace_ds5/threads/threads.c:115.0

If no source file is available, then Unknown is displayed.

Type
This shows:

• whether or not the source file is available for the code at the breakpoint address,
Source Level if available or Address Level if not available

• if the breakpoint is on code in a shared object, Auto indicates that the breakpoint is
automatically set when that shared object is loaded

• if the breakpoint is Active, the type of breakpoint, either Software Breakpoint
or Hardware Breakpoint

• the type of instruction at the address of the breakpoint, ARM or Thumb.

:

Source Level Software Breakpoint [ARM]

State
Indicates one of the following:
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Active
The image or shared object containing the address of the breakpoint is loaded,
and the breakpoint is set.

No Connection
The breakpoint is in an application on a target that is not connected.

Pending
The image or shared object containing the address of the breakpoint has not yet
been loaded. The breakpoint becomes active when the image or shared object is
loaded.

Address
A dialog box that displays one or more breakpoint or sub-breakpoint addresses with
check boxes where you can enable or disable them.

Temporary
Shows true if this is a temporary breakpoint. Otherwise, shows false.

Breakpoint options

The following options are available for you to set:

Stop Condition
Specify a C-style conditional expression for the selected breakpoint. For example, to
activate the breakpoint when the value of x equals 10, specify x==10.

Ignore Count
Specify the number of times the selected breakpoint is ignored before it is activated.

The debugger decrements the counter on each pass until it reaches zero, for example:

main()+140 @ threads.c:51 [#1 ARM, ignore = 2/3] (threads)

When the value reaches zero the breakpoint activates. Each subsequent pass causes the
breakpoint to activate.

Select the Reset Ignore Count option from the context menu to reset the counter to the
value you have set and delay activation again.

On break, run script
Specify a script file to run when the selected breakpoint is activated.

 Note 

Take care with the commands you use in a script that is attached to a breakpoint. For
example, if you use the quit command in a script, the debugger disconnects from the
target when the breakpoint is hit.

Continue Execution
Select this option if you want to continue running the target after the breakpoint is
activated.

Silent
Controls the printing of stop messages for the selected breakpoint.

Break on Selected Threads or Cores
Select this option if you want to set a breakpoint for a specific thread or processor. This
option is disabled if none are available.

When a breakpoint activates, the debugger does the following:

• displays a message in the Commands view, for example:

Execution stopped at breakpoint 1: 0x00008850
In thread 1 (OS thread id 1078)
0x00008850   51,0   thread_app_data[t].thread = t;
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• increments a hit count for the breakpoint, for example:

main()+140 @ threads.c:51 [#1 ARM, ignore = 0/3, 2 hits] (threads)

10 DS-5 Debug perspectives and views
10.28 Breakpoint properties dialog box

ARM DUI0446P Copyright © 2010-2013 ARM. All rights reserved. 10-261
Non-Confidential



10.29 Watchpoint properties dialog box
Describes the dialog box content.

This dialog box enables you to:

• display the properties of a selected watchpoint
• change the watchpoint type.

Figure 10-31  Watchpoint properties dialog box

The following types are available:

READ
The debugger stops the target when the memory is read

WRITE
The debugger stops the target when the memory is written

ACCESS
The debugger stops the target when the memory is read or written.
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10.30 Tracepoint properties dialog box
Describes the dialog box content.

This dialog box enables you to display the properties of a selected tracepoint.

Figure 10-32  Tracepoint properties dialog box

The following types are available:

Trace Start Point
Enables trace capture when it is hit.

Trace Stop Point
Disables trace capture when it is hit.

Trace Trigger Point
Starts trace capture when it is hit.

 Note 

Tracepoint behavior might vary depending on the selected target.
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10.31 Manage Signals dialog box
Describes the dialog box content.

This dialog box enables you to control the handler (vector catch) settings for one or more signals
or processor exceptions. When a signal or processor exception occurs you can choose to stop
execution, print a message, or both. Stop and Print are selected for all signals by default.

 Note 

When connected to an application running on a remote target using gdbserver, the debugger
handles Unix signals but on bare-metal targets with no operating system it handles processor
exceptions.
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Figure 10-33  Managing signal handler settings

Figure 10-34  Manage exception handler settings
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10.32 Event Viewer dialog box
Describes the dialog box content.

This dialog box enables you to select a trace source in addition to masters and channels to display
in the view.

Select a Trace Source
Enables you to select a trace source.

Masters
Enables you to select the Masters that you want to display in the Events view. Masters
are only available for STM trace.

All Masters
Selects all the masters.

Clear Masters
Discards all the masters.

 Note 

These options do not modify the data in the channels field.

Channels
Enables you to provide a list or group of channels.

Add All
Sets the channels of the selected master to the default value.

Clear
Clears the channels of the selected master.

 Note 

A master with zero channels displays no data.

Apply
Reorganizes the current channels into a canonical form.

Import
Enables you to import an existing configuration.

Export
Enables you to save an existing configuration for use with a different launch
configuration.

Reset to Defaults
Resets the configuration to the default configuration.

OK
Reorganizes the current channels into a canonical form, saves the settings, and closes the
dialog box.

Cancel
Enables you to cancel unsaved changes.
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10.33 Functions Filter dialog box
Describes the dialog box content.

This dialog box enables you to filter the list of symbols that are displayed in the Functions view.

Figure 10-35  Function filter dialog box
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10.34 Jython Script Parameters dialog box
Describes the dialog box content.

This dialog box enables you to specify script parameters.

Script Parameters
Enter parameters for the selected script in the text field. Parameters must be space
delimited.

Variables...
This button opens the Select Variable dialog box where you can select variables that are
passed to the application when the debug session starts. For more information on Eclipse
variables, use the dynamic help.

OK
Saves the current parameters and closes the Jython Script Parameters dialog box.

Cancel
Closes the Jython Script Parameters dialog box without saving the parameters.

Figure 10-36  Jython Script Parameters dialog box
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10.35 Debug Configurations - Connection tab
Describes the tab content.

The Connection tab in the Debug Configurations dialog box enables you to configure DS-5
Debugger target connections. Each configuration you create is associated with a single target
processor.

If the development platform has multiple processors, then you must create a separate configuration
for each processor. Be aware that when connecting to multiple targets you cannot perform
synchronization or cross-triggering operations.

 Note 

Options in the Connection tab are dependent on the type of platform that you select.

Select target
These options enable you to select the target manufacturer, board, project type, and debug
operation.

DTSL Options
Select Edit... to open a dialog box to configure additional debug and trace settings.

Connections
These options enable you to configure the connection between the debugger and the
target:

RSE connection
A list of Remote Systems Explorer (RSE) configurations that you have
previously set up. Select the required RSE configuration that you want to use for
this debug configuration.

Android devices
A list of Android devices that you have previously configured. Select the
required device that you want to use for this debug configuration.

Connect as root
Select to give root access when starting gdbserver. This option is dependent
on the selected debug operation and might not be available.

gdbserver (TCP)
Specify the target IP address or name and the associated port number for the
connection between the debugger and gdbserver.

The following options might also be available, depending on the debug operation
you selected:

• Select the Use Extended Mode checkbox if you want to restart an
application under debug. Be aware that this might not be fully implemented
by gdbserver on all targets.

• Select the Terminate gdbserver on disconnect checkbox to terminate
gdbserver when you disconnect from the target.

• Select the Use RSE Host checkbox to connect to gdbserver using the RSE
configured host.
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gdbserver (serial)
Specify the local serial port and connection speed for the serial connection
between the debugger and gdbserver.

For model connections, details for gdbserver are obtained automatically from
the target.

Select the Use Extended Mode checkbox if you want to restart an application
under debug. Be aware that this might not be fully implemented by gdbserver
on all targets.

Bare Metal Debug
Specify the target IP address or name of the debug hardware adapter. You can
also click on Browse... to display all the available debug hardware adapters on
your local subnet or USB connections.

Model parameters
Specify the parameter for launching the model.

Model parameters (pre-configured to boot ARM Embedded application)
These options are only enabled for the pre-configured option that boots an ARM
Embedded Fixed Virtual Platform.

You can configure a Virtual File System (VFS) that enables a model to run an application
and related shared library files from a directory on the local host. Alternatively, you can
disable VFS and manually transfer the files to a directory on the model.

Enable Virtual File System support
Enable or disable the use of VFS.

Host mount point
Specify the location of the file system on the local host:, you can select the
workspace root directory.

• enter the location in the field provided
• click on File System... to locate the directory in an external location from the

workspace
• click on Workspace... to locate the directory within the workspace.

Remote target mount point
Displays the default location of the file system on the model. The default is the /
writeable directory.

Apply
Save the current configuration. This does not connect to the target.

Revert
Undo any changes and revert to the last saved configuration.

Debug
Connect to the target and close the Debug Configurations dialog box.

Close
Close the Debug Configurations dialog box.
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Figure 10-37  Connection configuration for a model using VFS
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10.36 Debug Configurations - Files tab
Describes the tab content.

The Files tab in the Debug Configurations dialog box enables you to select debug versions of the
application file and libraries on the host that you want the debugger to use. You can also specify
the target file system folder to which files can be transferred if required.

 Note 

Options in the Files tab depend on the type of platform and debug operation that you select.

Files
These options enable you to configure the target file system and select files on the host
that you want to download to the target or use by the debugger. The Files tab options
available for each Debug operation are:

Table 10-1  Files tab options available for each Debug operation

Download and

debug
application

Debug target

resident
application

Connect to
already

running
gdbserver

Debug via
DSTREAM\RVI

Debug and ETB
Trace via
DSTREAM\RVI

Application on host to
download

Yes - - Yes Yes

Application on target - Yes - - -

Target download
directory

Yes - - - -

Target working
directory

Yes Yes - - -

Load symbols from file Yes Yes Yes Yes Yes

Other file on host to
download

Yes - - - -

Path to target system
root directory

Yes Yes Yes - -

Apply
Save the current configuration. This does not connect to the target.

Revert
Undo any changes and revert to the last saved configuration.

Debug
Connect to the target and close the Debug Configurations dialog box.

Close
Close the Debug Configurations dialog box.

10 DS-5 Debug perspectives and views
10.36 Debug Configurations - Files tab

ARM DUI0446P Copyright © 2010-2013 ARM. All rights reserved. 10-272
Non-Confidential



Figure 10-38  File system configuration for an application on a model

Files options summary

The Files options available depend on the debug operation you selected on the Connection tab.
The possible Files options are:

Application on host to download
Specify the application image file on the host that you want to download to the target:

• enter the host location and file name in the field provided
• click on File System... to locate the file in an external directory from the Eclipse

workspace
• click on Workspace... to locate the file in an project directory or sub-directory within

the Eclipse workspace.

For example, to download the stripped (no debug) Gnometris application image select
the gnometris/stripped/gnometris file.

Select Load symbols to load the debug symbols from the specified image.

Select Enable on-demand loading to specify how you want the debugger to load debug
information. Enabling this option can provide a faster load and use less memory but
debugging might be slower.
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Project directory
Specify the Android project directory on the host:

• enter the host location in the field provided
• click on File System... to locate the project directory in an external location from the

Eclipse workspace
• click on Workspace... to locate the project directory from within the Eclipse

workspace.

APK file
Specify the Android APK file on the host that you want to download to the target:

• enter the host location and file name in the field provided
• click on File System... to locate the file in an external directory from the Eclipse

workspace
• click on Workspace... to locate the file in an project directory or sub-directory within

the Eclipse workspace.

Process
This field is automatically populated from the AndroidManifest.xml file.

Activity
This field is automatically populated from the AndroidManifest.xml file.

Application on target
Specify the location of the application on the target. gdbserver uses this to launch the
application.

For example, to use the stripped (no debug) Gnometris application image when using a
model and VFS is configured to mount the host workspace as /writeable on the
target, specify the following in the field provided:

/writeable/gnometris/stripped/gnometris.

Target download directory
If the target has a preloaded image, then you might have to specify the location of the
corresponding image on your host.

The debugger uses the location of the application image on the target as the default
current working directory. To change the default setting for the application that you are
debugging, enter the location in the field provided. The current working directory is used
whenever the application references a file using a relative path.

Load symbols
Specify the application image containing the debug information to load:

• enter the host location and file name in the field provided
• click on File System... to locate the file in an external directory from the workspace
• click on Workspace... to locate the file in a project directory or sub-directory within

the workspace.

For example, to load the debug version of Gnometris you must select the gnometris
application image that is available in the gnometris project root directory.

Although you can specify shared library files here, the usual method is to specify a path
to your shared libraries with the Shared library search directory option on the
Debugger tab.

 Note 

Load symbols is ticked by default.
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Add peripheral description files from directory
A directory with configuration files defining peripherals that must be added before
connecting to the target.

Other file on host to download
Specify other files that you want to download to the target:

• Enter the host location and file name in the field provided.
• Click on File System... to locate the file in an external directory from the workspace.
• Click on Workspace... to locate the file in a project directory or sub-directory within

the workspace.

For example, to download the stripped (no debug) Gnometris shared library to the target
you can select the gnometris/stripped/libgames-support.so file.

Path to target system root directory
Specifies the system root directory to search for shared library symbols.

The debugger uses this directory to search for a copy of the debug versions of target
shared libraries. The system root on the host workstation must contain an exact
representation of the libraries on the target root filesystem.

Target working directory
If this field is not specified, the debugger uses the location of the application image on the
target as the default current working directory. To change the default setting for the
application that you are debugging, enter the location in the field provided. The current
working directory is used whenever the application refers to a file using a relative path.

Remove this resource from the list
To remove a resource from the configuration settings, click this button next to the
resource that you want to remove.

Add a new resource to the list
To add a new resource to the file settings, click this button and then configure the options
as required.

Related concepts
6.9 About debugging a Linux kernel on page 6-146.
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10.37 Debug Configurations - Debugger tab
Describes the tab content.

The Debugger tab in the Debug Configurations dialog box enables you to specify the actions that
you want the debugger to do after connection to the target.

Run Control
These options enable you to define the running state of the target when you connect:

Connect only
Connect to the target, but do not run the application.

 Note 

The PC register is not set and pending breakpoints or watchpoints are
subsequently disabled when a connection is established.

Debug from entry point
Run the application when a connection is established, then stop at the image
entry point.

Debug from symbol
Run the application when a connection is established, then stop at the address of
the specified symbol. The debugger must be able to resolve the symbol. If you
specify a C or C++ function name, then do not use the () suffix.

If the symbol can be resolved, execution stops at the address of that symbol.

If the symbol cannot be resolved, a message is displayed in the Commands view
warning that the symbol cannot be found. The debugger then attempts to stop at
the image entry point.

Run target initialization debugger script (.ds)
Select this option to execute target initialization scripts (a file containing
debugger commands) immediately after connection. To select a file:

• enter the location and file name in the field provided
• click on File System... to locate the file in an external directory from the

workspace
• click on Workspace... to locate the file in a project directory or sub-directory

within the workspace.

Run debug initialization debugger script (.ds)
Select this option to execute debug initialization scripts (a file containing
debugger commands) after execution of any target initialization scripts and also
running to an image entry point or symbol, if selected. To select a file:

• enter the location and file name in the field provided
• click on File System... to locate the file in an external directory from the

workspace
• click on Workspace... to locate the file in a project directory or sub-directory

within the workspace.

 Note 

You might have to insert a wait command before a run or continue
command to enable the debugger to connect and run the application to the
specified function.
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Execute debugger commands
Enter debugger commands in the field provided if you want to automatically
execute specific debugger commands that run on completion of any initialization
scripts. Each line must contain only one debugger command.

Host working directory
The debugger uses the Eclipse workspace as the default working directory on the
host. To change the default setting for the application that you are debugging,
deselect the Use default check box and then:

• enter the location in the field provided
• click on File System... to locate the external directory
• click on Workspace... to locate the project directory.

Paths
You can modify the search paths on the host used by the debugger when it displays
source code.

Source search directory
Specify a directory to search for source files:

• enter the location and file name in the field provided
• click on File System... to locate the directory in an external location from the

workspace
• click on Workspace... to locate the directory within the workspace.

Shared library search directory
Specify a directory to search for shared libraries:

• enter the location in the field provided
• click on File System... to locate the directory in an external location from the

workspace
• click on Workspace... to locate the directory within the workspace.

Remove this resource from the list
To remove a search path from the configuration settings, click this button next to
the resource that you want to remove.

Add a new resource to the list
To add a new search path to the configuration settings, click this button and then
configure the options as required.

Apply
Save the current configuration. This does not connect to the target.

Revert
Undo any changes and revert to the last saved configuration.

Debug
Connect to the target and close the Debug Configurations dialog box.

Close
Close the Debug Configurations dialog box.
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Figure 10-39  Debugger configuration to set application starting point and search paths

Related concepts
6.9 About debugging a Linux kernel on page 6-146.
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10.38 Debug Configurations - OS Awareness tab
Describes the OS Awareness tab content.

The OS Awareness tab in the Debug Configurations dialog box enables you to inform the
debugger of the Operating system (OS) the target is running. This enables the debugger to provide
additional functionality specific to the selected OS.

Multiple options are available in the drop-down box and its content is controlled by the selected
platform and connection type in the Connection tab. OS awareness depends on having debug
symbols for the OS loaded within the debugger.

 Note 

Linux OS awareness is not currently available in this tab, and remains in the Connection tab as a
separate debug operation.

Figure 10-40  OS Awareness tab
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10.39 Debug Configurations - Arguments tab
Describes the tab content.

If your application accepts command-line arguments to main(), you can specify the values to
pass to the application when execution starts.

The Arguments tab in the Debug Configurations dialog box enables you to enter arguments that
are passed to the application.

 Note 

These settings only apply if the target supports semihosting and they cannot be changed while the
target is running.

The Arguments tab contains the following elements:

Program Arguments
This panel enables you to enter the arguments. Arguments are passed to the target
application unmodified except when the text is an eclipse argument variable of the form $
{var_name} where Eclipse replaces it with the related value.

For a Linux target you might have to escape some characters using a backslash
(\)character. For example, the @, (, ), ", and # characters must be escaped.

Variables...
This button opens the Select Variable dialog box where you can select variables that are
passed to the application when the debug session starts. For more information on
variables, use the dynamic help.

Apply
Save the current configuration. This does not connect to the target.

Revert
Undo any changes and revert to the last saved configuration.

Debug
Connect to the target and close the Debug Configurations dialog box.

Close
Close the Debug Configurations dialog box.
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Figure 10-41  Application arguments configuration

Related references
4.3 About passing arguments to main() on page 4-101.
7.1 About semihosting and top of memory on page 7-157.
7.2 Working with semihosting on page 7-158.
7.3 Enabling automatic semihosting support in the debugger on page 7-159.
7.4 Controlling semihosting messages using the command-line console on page 7-160.

Related information
DS-5 Debugger commands.
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10.40 Debug Configurations - Environment tab
Describes the tab content.

The Environment tab in the Debug Configurations dialog box enables you to create and
configure the target environment variables that are passed to the application when the debug
session starts.

 Note 

The settings in this tab are not used for connections that use the Connect to already running
gdbserver debug operation.

The Environment tab contains the following elements:

Target environment variables to set
This panel displays the current target environment variables in use by the debugger.

New...
This button opens the New Environment Variable dialog box where you can create a new
target environment variable.

For example, to debug the Gnometris application on a model you must create a target
environment variable for the DISPLAY setting.

Figure 10-42  Setting up target environment variables

Edit...
This button opens the Edit Environment Variable dialog box where you can edit the
properties for the selected target environment variable.

Remove
This button removes the select target environment variables from the list.

Apply
Save the current configuration. This does not connect to the target.

Revert
Undo any changes and revert to the last saved configuration.

Debug
Connect to the target and close the Debug Configurations dialog box.

Close
Close the Debug Configurations dialog box.

10 DS-5 Debug perspectives and views
10.40 Debug Configurations - Environment tab

ARM DUI0446P Copyright © 2010-2013 ARM. All rights reserved. 10-282
Non-Confidential



Figure 10-43  Environment configuration for a model
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10.41 DTSL Configuration Editor dialog box
Describes the dialog box content.

The Debug and Trace Services Layer (DTSL) configuration editor enables you to configure
additional debug and trace settings. The available configuration options depend on the capabilities
of the target, and typically enable configuration of the trace collection method and the trace that is
generated. A typical set of configuration options might include:

Trace capture method
Select the collection method that you want to use for this debug configuration. The
available trace collection methods depend on the target and trace capture unit but can
include Embedded Trace Buffer (ETB)/Micro Trace Buffer (MTB) (trace collected from
an on-chip buffer) or DSTREAM (trace collected from the DSTREAM trace buffer). If
no trace collection method is selected then no trace can be collected, even if the trace
capture for processors and Instruction Trace Macrocell (ITM) are enabled.

Enable core trace
Enable or disable trace collection. If enabled then the following options are available:

Enable core n trace
Specify trace capture for specific processors.

Cycle accurate
Enable or disable cycle accurate trace.

Trace capture range
Specify an address range to limit the trace capture.

Enable ITM trace
Enable or disable trace collection from the ITM unit.

Named DTSL configuration profiles can be saved for later use.
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Figure 10-44  DTSL configuration editor
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10.42 Configuration database panel
Describes the dialog box content.

This panel enables you to manage the configuration database settings.

Default Target Database
Provides you with the default DS-5 configuration databases.

 Note 

ARM recommends that you do not disable these.

User Target Database
Enables you to add your own configuration database.

Add...
Opens a dialog box where you can select the new configuration database folder.

Edit
Opens a dialog box where you can modify the existing name and location for the
selected configuration database.

Remove
Removes the selected configuration database.

Up
Moves the selected configuration database up the list.

Down
Moves the selected configuration database down the list.

 Note 

Databases process from top to bottom with information in the lower databases
replacing information in higher databases. For example, if you produced a
modified core definition with different registers, you would add it to the database
at the bottom of the list so that the database uses it instead of the core definitions
in the shipped database.

Rebuild database...
Rebuild the configuration database.

Restore Defaults
Removes all the configuration databases from the field text that do not belong to the DS-5
default system.

Apply
Saves the current configuration database configuration settings.
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Figure 10-45  Configuration Database panel

Related concepts
2.9 About the target configuration import utility on page 2-47.

Related tasks
2.10 Adding a new platform on page 2-49.
2.11 Adding a new configuration database to DS-5 on page 2-51.
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10.43 About the Remote System Explorer
Describes the tab content.

The Remote Systems Explorer (RSE) enables you to:

• set up Linux SSH connections to remote targets using TCP/IP
• create, copy, delete, and rename resources
• set the read, write, and execute permissions for resources
• edit files by double-clicking to open in the C/C++ editor view
• execute commands on the remote target
• view and kill running processes
• transfer files between the host workstation and remote targets
• launch terminal views.

Useful RSE views that can be added to the DS-5 Debug perspective are:

• Remote Systems
• Remote System Details
• Remote Scratchpad
• Terminals.

To add a view to the DS-5 Debug perspective:

1. Ensure that you are in the DS-5 perspective. You can change perspective by using the
perspective toolbar or you can select Window > Open perspective from the main menu.

2. Select Window > Show View > Other... to open the Show View dialog box.
3. Select the required view from the Remote Systems group.
4. Click OK.
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10.44 Remote Systems view
Describes the tab content.

This hierarchical tree view enables you to:

• set up a Linux connection to a remote target using the Secure SHell (SSH) protocol
• access resources on the host workstation and remote targets
• display a selected file in the C/C++ editor view
• open the Remote System Details view and show the selected connection configuration details

in a table
• open the Remote Monitor view and show the selected connection configuration details
• import and export the selected connection configuration details
• connect to the selected target
• delete all passwords for the selected connection
• open the Properties dialog box and display the current connection details for the selected

target.

Figure 10-46  Remote Systems view
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10.45 Remote System Details view
Describes the tab content.

This tabular view enables you to:

• set up a Linux connection to a remote target using the Secure SHell (SSH) protocol
• access resources on the host workstation and remote targets
• display a selected file in the C/C++ editor view
• open the Remote Systems view and show the selected connection configuration details in a

hierarchical tree
• open the Remote Monitor view and show the selected connection configuration details
• import and export the selected connection configuration details
• connect to the selected target
• delete all passwords for the selected connection
• open the Properties dialog box and display the current connection details for the selected

target.

Figure 10-47  Remote System Details view

The Remote System Details view is not visible by default. To add this view:

1. Select Window > Show View > Other... to open the Show View dialog box.
2. Expand the Remote Systems group and select Remote System Details.
3. Click OK.
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10.46 Target management terminal for serial and SSH connections
Describes the tab content.

The target management terminal enables you to enter shell commands directly on the target
without launching any external application. For example you can browse remote files and folders
by entering the ls or pwd commands in the same way as you would in a Linux terminal.

Figure 10-48  Terminal view

The Terminal view is not visible by default. To add this view:

1. Select Window > Show View > Other... to open the Show View dialog box.
2. Expand the Terminal group and select Terminal
3. Click OK.
4. In the Terminal view, click on the Settings
5. Select the required connection type.
6. Enter the appropriate information in the Settings dialog box
7. Click OK.

Related tasks
2.3 Configuring a connection to a Linux target using gdbserver on page 2-31.
2.4 Configuring a connection to a Linux Kernel on page 2-33.
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10.47 Remote Scratchpad view
Describes the tab content.

The Remote Scratchpad view is an electronic clipboard where you can copy and paste or drag
and drop useful files and folders into this view for use at a later point in time. This enables you to
keep a list of resources from any connection in one place.

 Note 

Be aware that although the scratchpad only shows links, any changes made to a linked resource
also changes it in the original file system.

Figure 10-49  Remote Scratchpad

The Remote Scratchpad view is not visible by default. To add this view:

1. Select Window > Show View > Other... to open the Show View dialog box.
2. Expand the Remote Systems group and select Remote Scratchpad.
3. Click OK.
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10.48 Remote Systems terminal for SSH connections
Describes the tab content.

The Remote Systems terminal enables you to enter shell commands directly on the target without
launching any external application. For example you can browse remote files and folders by
entering the ls or pwd commands in the same way as you would in a Linux terminal.

Figure 10-50  Remote Systems Terminals view

The Terminals view is not visible by default. To add this view:

1. Select Window > Show View > Other... to open the Show View dialog box.
2. Expand the Remote Systems group and select Remote Systems.
3. Click OK.
4. In the Remote Systems view:

a. Click on the toolbar icon Define a connection to a remote system and configure an
Secure SHell (SSH) connection to the target.

b. Right-click on the connection and select Connect from the context menu.
c. Enter the User ID and password in the relevant fields.
d. Click OK to connect to the target.
e. Right-click on Ssh Terminals.

5. Select Launch Terminal to open a terminal shell that is connected to the target.
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10.49 New Terminal Connection dialog box
Describes the dialog box content.

The dialog box enables you to:

• change the view title
• select the connection type
• set the connection settings.

Figure 10-51  Terminal Settings dialog box

View Settings
Enables you to give a name to the Terminal view.

View Title
Enter a name for the Terminal view.

Connection Type
Specifies a connection type. Either Serial or Secure SHell (SSH).

Settings
Enables you to configure the connection settings.

Port
Specifies the port that the target is connected to.

Baud Rate
Specifies the connections baud rate.

Data Bits
Specifies the number of data bits.

10 DS-5 Debug perspectives and views
10.49 New Terminal Connection dialog box

ARM DUI0446P Copyright © 2010-2013 ARM. All rights reserved. 10-294
Non-Confidential



Stop Bits
Specifies the number of stop bits for each character.

Parity
Specifies the parity type:

• None. This is the default.
• Even.
• Odd.
• Mark.
• Space.

Flow Control
Specifies the flow control of the connection:

• None. This is the default.
• RTS/CTS.
• Xon/Xoff.

Timeout (sec)
Specifies the connections timeout in seconds.
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10.50 DS-5 Debugger menu and toolbar icons
Describes the menus and toolbar icons used in the DS-5 Debug perspective.

These tables list the most common menu and toolbar icons available for use with DS-5 Debugger.
For information on icons, markers, and buttons not listed in the following tables, see the standard
Workbench User Guide or the C/C++ Development User Guide in the Help > Help Contents
window.

If you leave the mouse pointer positioned on a toolbar icon for a few seconds without clicking, a
tooltip appears informing you of the purpose of the icon.

Table 10-2  DS-5 Debugger icons

Icon Description Icon Description

Connect to target Connected to target

Disconnect from target Delete connection

Start application and run to main Start application and run to entry point

Run application from entry point Restart the application

Continue running application Stop application

Step into Step over

Step out Toggle stepping mode

Continue running application backwards Reverse step source line

Reverse step over source line Reverse step out source line

Collapse all configurations in stack trace Call stack

Thread Process

Kernel module Define a new RSE connection

Refresh the RSE resource tree Save view contents to a file

Clear view contents Switch to History view

Synchronize view contents Toggle scroll lock

Run commands from a script file Export commands to a script file

Remove selected breakpoint, watchpoints, or
expression (view dependent)

Remove all breakpoints, watchpoints, or
expressions (view dependent)

Display breakpoint location in source file Deactivate all breakpoints and watchpoints

Import from a file Export to a file

Create new script file or add new expression (view
dependent)

Run select script file

Open selected file for editing Delete the selected files

Set display width Set display format
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Table 10-2  DS-5 Debugger icons  (continued)

Icon Description Icon Description

Toggle the display of ASCII characters Toggle freeze mode

Edit Screen view parameters Add new Screen view

Add new Disassembly view Add new Variables view

Add new Registers view Add new Memory view

Add new Expression view Add new Trace view

Add Functions view View update in progress

Toggle trace marker Show next match

Show previous match Show instruction trace

Show function trace Toggle navigation resolution

Toggle the views Application rewind information displayed in view

Perspective icons

Table 10-3  Perspective icons

Icon Description Icon Description

Open new perspective C/C++ perspective

DS-5 Debug perspective Fast view bar

View icons

Table 10-4  View icons

Button Description Button Description

Display drop-down menu Synchronize view contents

Minimize Maximize

Restore Close

View markers

Table 10-5  View markers

Icon Description Icon Description

Software breakpoint enabled Hardware breakpoint enabled

Access watchpoint enabled Read watchpoint enabled

Write watchpoint enabled Software breakpoint disabled
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Table 10-5  View markers  (continued)

Icon Description Icon Description

Hardware breakpoint disabled Access watchpoint disabled

Read watchpoint disabled Write watchpoint disabled

Software breakpoint pending Hardware breakpoint pending

Access watchpoint pending Read watchpoint pending

Write watchpoint pending Software breakpoint disconnected

Hardware breakpoint disconnected Access watchpoint disconnected

Read watchpoint disconnected Write watchpoint disconnected

Multiple-statement software breakpoint enabled Multiple-statement software breakpoint disabled

Error Current location

Warning Bookmark

Information Task

Search result

Miscellaneous icons

Table 10-6  Miscellaneous icons

Icon Description Icon Description

Open a new resource wizard Open new project wizard

Open new folder wizard Open new file wizard

Open search dialog box Display context-sensitive help

Open import wizard Open export wizard
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Chapter 11
Troubleshooting

Describes how to diagnose problems when debugging applications using DS-5 Debugger.
It contains the following:

• 11.1 ARM Linux problems and solutions on page 11-300.
• 11.2 Enabling internal logging from the debugger on page 11-301.
• 11.3 Target connection problems and solutions on page 11-302.
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11.1 ARM Linux problems and solutions
Lists possible problems when debugging a Linux application.

You might encounter the following problems when debugging a Linux application.

ARM Linux permission problem

If you receive a permission denied error message when starting an application on the target then
you might have to change the execute permissions on the application. :

chmod +x myImage

A breakpoint is not being hit

You must ensure that the application and shared libraries on your target are the same as those on
your host. The code layout must be identical, but the application and shared libraries on your
target do not require debug information.

Operating system support is not active

When Operating System (OS) support is required, the debugger activates it automatically where
possible. If OS support is required but cannot be activated, the debugger produces an error. :

ERROR(CMD16-LKN36):
! Failed to load image "gator.ko"
! Unable to parse module because the operating system support is not active

OS support cannot be activated if:

• debug information in the vmlinux file does not correctly match the data structures in the
kernel running on the target

• it is manually disabled by using the set os enabled off command.

To determine whether the kernel versions match:

• stop the target after loading the vmlinux image
• enter the print init_nsproxy.uts_ns->name command
• verify that the $1 output is correct. :

$1 = {sysname = "Linux", nodename = "(none)", release = "3.4.0-rc3", 
version = "#1 SMP Thu Jan 24 00:46:06 GMT 2013", machine = "arm", 
domainname = "(none)"}

Related tasks
2.3 Configuring a connection to a Linux target using gdbserver on page 2-31.
2.4 Configuring a connection to a Linux Kernel on page 2-33.
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11.2 Enabling internal logging from the debugger
Describes how to enable internal logging to help diagnose error messages.

On rare occasions an internal error might occur causing the debugger to generate an error message
suggesting that you report it to your local support representatives. You can help to improve the
debugger by giving feedback with an internal log that captures the stacktrace and shows where in
the debugger the error occurs. To obtain the current version of DS-5, you can select About ARM
DS-5 from the Help menu in Eclipse or open the product release notes.

To enable internal logging within Eclipse, enter the following in the Commands view of the DS-5
Debug perspective:

1. To enable the output of logging messages from the debugger using the predefined DEBUG
level configuration:

log config debug

2. To redirect all logging messages from the debugger to a file:

log file debug.log

 Note 

Enabling internal logging can produce very large files and slow down the debugger significantly.
Only enable internal logging when there is a problem.

Related references
Feedback on page 14.
10.6 Commands view on page 10-204.
7.5 Controlling the output of logging messages on page 7-161.
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11.3 Target connection problems and solutions
Lists possible problems when connecting to a target.

Failing to make a connection

The debugger might fail to connect to the selected debug target because of the following reasons:

• you do not have a valid license to use the debug target
• the debug target is not installed or the connection is disabled
• the target hardware is in use by another user
• the connection has been left open by software that exited incorrectly
• the target has not been configured, or a configuration file cannot be located
• the target hardware is not powered up ready for use
• the target is on a scan chain that has been claimed for use by something else
• the target hardware is not connected
• you want to connect through gdbserver but the target is not running gdbserver
• there is no ethernet connection from the host to the target
• the port number in use by the host and the target are incorrect

Check the target connections and power up state, then try and reconnect to the target.

Debugger connection settings

When debugging a bare-metal target the debugger might fail to connect because of the following
reasons:

• Heap Base address is incorrect
• Stack Base (top of memory) address is incorrect
• Heap Limit address is incorrect
• Incorrect vector catch settings.

Check that the memory map settings are correct for the selected target. If set incorrectly, the
application might crash because of stack corruption or because the application overwrites its own
code.

Related tasks
2.3 Configuring a connection to a Linux target using gdbserver on page 2-31.
2.4 Configuring a connection to a Linux Kernel on page 2-33.

11 Troubleshooting
11.3 Target connection problems and solutions

ARM DUI0446P Copyright © 2010-2013 ARM. All rights reserved. 11-302
Non-Confidential


	ARM® DS-5™ Using the Debugger
	Contents
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information


	1: Getting started with DS-5™ Debugger
	1.1: About the debugger
	1.2: Debugger concepts
	1.3: Launching the debugger from Eclipse
	1.4: Launching the debugger from the command-line console
	1.5: DS-5 Debug perspective keyboard shortcuts
	1.6: DS-5 Debugger command-line console keyboard shortcuts
	1.7: Standards compliance in the DS-5 Debugger

	2: Configuring and connecting to a target
	2.1: Types of target connections
	2.2: Configuring a connection to a Fixed Virtual Platform (FVP)
	2.3: Configuring a connection to a Linux target using gdbserver
	2.4: Configuring a connection to a Linux Kernel
	2.5: About configuring connections to a Linux target using Application Debug with Rewind Support
	2.5.1: Connecting to an existing application and application rewind session
	2.5.2: Downloading your application and application rewind server on the target system
	2.5.3: Starting the application rewind server and debugging the target-resident application

	2.6: About configuring connections to an Android target using Native Application/Library Debug with Rewind Support
	2.6.1: Attaching to a running Android application
	2.6.2: Downloading and debugging an Android application

	2.7: Configuring a connection to a bare-metal target
	2.8: Configuring an Event Viewer connection to a bare-metal target
	2.9: About the target configuration import utility
	2.10: Adding a new platform
	2.11: Adding a new configuration database to DS-5
	2.12: Exporting an existing launch configuration
	2.13: Importing an existing launch configuration
	2.14: Disconnecting from a target

	3: Working with the target configuration editor
	3.1: About the target configuration editor
	3.2: Target configuration editor - Overview tab
	3.3: Target configuration editor - Memory tab
	3.4: Target configuration editor - Peripherals tab
	3.5: Target configuration editor - Registers tab
	3.6: Target configuration editor - Group View tab
	3.7: Target configuration editor - Enumerations tab
	3.8: Target configuration editor - Configurations tab
	3.9: Scenario demonstrating how to create a new target configuration file
	3.9.1: Creating a memory map
	3.9.2: Creating a peripheral
	3.9.3: Creating a standalone register
	3.9.4: Creating a peripheral register
	3.9.5: Creating enumerations for use with a peripheral register
	3.9.6: Assigning enumerations to a peripheral register
	3.9.7: Creating remapping rules for a control register
	3.9.8: Creating a memory region for remapping by a control register
	3.9.9: Applying the map rules to the overlapping memory regions

	3.10: Creating a power domain for a target
	3.11: Creating a Group list
	3.12: Importing an existing target configuration file
	3.13: Exporting a target configuration file

	4: Controlling execution
	4.1: About loading an image on to the target
	4.2: About loading debug information into the debugger
	4.3: About passing arguments to main()
	4.4: Running an image
	4.5: About breakpoints and watchpoints
	4.6: Setting an execution breakpoint
	4.7: Working with data watchpoints
	4.8: Setting a tracepoint
	4.9: Setting Streamline start and stop points
	4.10: Setting a conditional breakpoint
	4.11: Setting a breakpoint on a specific thread
	4.12: Pending breakpoints and watchpoints
	4.13: Exporting DS-5 breakpoint settings to a file
	4.14: Importing DS-5 breakpoint settings from a file
	4.15: Stepping through an application
	4.16: Handling Unix signals
	4.17: Handling processor exceptions
	4.18: Configuring the debugger path substitution rules

	5: Examining the target
	5.1: Examining the target execution environment
	5.2: Examining the call stack
	5.3: About trace support

	6: Debugging embedded systems
	6.1: About endianness
	6.2: About accessing AHB, APB, and AXI buses
	6.3: About virtual and physical memory
	6.4: About debugging hypervisors
	6.5: About debugging big.LITTLE systems
	6.6: About debugging bare-metal symmetric multiprocessing systems
	6.7: About debugging multi-threaded applications
	6.8: About debugging shared libraries
	6.9: About debugging a Linux kernel
	6.10: About debugging Linux kernel modules
	6.11: About debugging FreeRTOS ™
	6.12: About debugging TrustZone enabled targets
	6.13: About debugging a Unified Extensible Firmware Interface (UEFI)
	6.14: About application rewind

	7: Controlling runtime messages
	7.1: About semihosting and top of memory
	7.2: Working with semihosting
	7.3: Enabling automatic semihosting support in the debugger
	7.4: Controlling semihosting messages using the command-line console
	7.5: Controlling the output of logging messages
	7.6: About Log4j configuration files
	7.7: Customizing the output of logging messages from the debugger

	8: Debugging with scripts
	8.1: Exporting DS-5 Debugger commands generated during a debug session
	8.2: Creating a DS-5 Debugger script
	8.3: Creating a CMM-style script
	8.4: About Jython scripts
	8.5: Jython script concepts and interfaces
	8.6: Creating Jython projects in Eclipse for DS-5™
	8.6.1: Creating a new Jython project in Eclipse for DS-5™
	8.6.2: Configuring an existing project to use the DS-5™ Jython interpreter

	8.7: Creating a Jython script
	8.8: Running a script

	9: Working with the Snapshot Viewer
	9.1: About the Snapshot Viewer
	9.2: Components of a Snapshot Viewer initialization file
	9.3: Connecting to the Snapshot Viewer
	9.4: Considerations when creating debugger scripts for the Snapshot Viewer

	10: DS-5 Debug perspectives and views
	10.1: App Console view
	10.2: ARM Asm Info view
	10.3: ARM assembler editor
	10.4: Breakpoints view
	10.5: C/C++ editor
	10.6: Commands view
	10.7: Debug Control view
	10.8: Disassembly view
	10.9: Events view
	10.10: Expressions view
	10.11: Functions view
	10.12: History view
	10.13: Memory view
	10.14: Modules view
	10.15: Registers view
	10.16: RTOS Data view
	10.17: Screen view
	10.18: Scripts view
	10.19: Target Console view
	10.20: Target view
	10.21: Trace view
	10.22: Variables view
	10.23: Auto Refresh Properties dialog box
	10.24: Memory Exporter dialog box
	10.25: Memory Importer dialog box
	10.26: Fill Memory dialog box
	10.27: Export trace report dialog box
	10.28: Breakpoint properties dialog box
	10.29: Watchpoint properties dialog box
	10.30: Tracepoint properties dialog box
	10.31: Manage Signals dialog box
	10.32: Event Viewer dialog box
	10.33: Functions Filter dialog box
	10.34: Jython Script Parameters dialog box
	10.35: Debug Configurations - Connection tab
	10.36: Debug Configurations - Files tab
	10.37: Debug Configurations - Debugger tab
	10.38: Debug Configurations - OS Awareness tab
	10.39: Debug Configurations - Arguments tab
	10.40: Debug Configurations - Environment tab
	10.41: DTSL Configuration Editor dialog box
	10.42: Configuration database panel
	10.43: About the Remote System Explorer
	10.44: Remote Systems view
	10.45: Remote System Details view
	10.46: Target management terminal for serial and SSH connections
	10.47: Remote Scratchpad view
	10.48: Remote Systems terminal for SSH connections
	10.49: New Terminal Connection dialog box
	10.50: DS-5 Debugger menu and toolbar icons

	11: Troubleshooting
	11.1: ARM Linux problems and solutions
	11.2: Enabling internal logging from the debugger
	11.3: Target connection problems and solutions


