JProfiler Manual

ej-technologies

© 2010 ej-technologies GmbH. All rights reserved.

Index

B8 | o) 1= g 1= o T PRSP PPRE 7
[[0 TV (o o] {0 [RSP 8
F N o [[o (o]] [SRR PP P ROPT 9
A.1 Background and CONFIQUIALIONoooiiiiiiiiiiiiiiiii e e e e e e e e 9
A.1.1 BENINA TRE SCENES ...ttt e et e e e e e e e st eeeaaaa e e e e e anas 9
A.1.2 Configuring Profiling SELHNGSeeeiiiiiiiiii e e 13
A.1.3 Method Call FECOTAINGooiieeiie ettt e e r e e e e e e e as 15
A.L.4 ConfiIQUING TIILEIS ...ttt e e e e e e e e e e e e e e naees 17
A.L.5 REMOLE ProfiliNg .ooeeeeiiiiiee ettt a e e e e 20
A.1.6 ReMOVING fINGLIZEIS ...ttt e e e e e e 23
A.1.7 Offline profiling and trIgQErSoooa i e e 26
A2 MEMOIY PrOfiliNG ..ceeeiiiiiiei ettt e e e e e e e e e e e e e 28
YN R = Toto] (o (10 To o] o] T=T ot K-S PPPRTT TR 28
A.2.2 Using the difference COIUMNSooiiiiiiiii e 30
A.2.3 FIiNdiNg @ MeMOIY 188K ... e e e 31
FNRC T OF = I = (011 To PRSPPSO 35
A.3.1 TIME MEASUIEIMENTSeiiiiiiieeeeee ittt et e e e e e e e e e abb b e e et e e ae e e s e s aanbsbbea et eaaaaeeaseaaannnbereees 35
A.3.2 HOLSPOLS AN FIlLEIS ...t e e e e e e e e e e e enaees 37

3 LS (] (=] o Lo PP 40
0 A T T] T TS = L (=Y PP 40
B.1.1 QUICKSIArt dialogccoceiiiiiiiiiiiie e a e e e e raaaeaeeaa s 40
B.1.2 RUNNING the dEMO SESSIONSuuuiiiiiiiiieee i e i e e e e e s s s e e e e e e e s e s e s ennnbr e e e eeaaaeeas 40
B.1.3 OVEIVIEW Of fEALUIEScoiiiiiiii ittt e e st e e e s nnaeneeas 40
B.1.4 JProfiler's StArt CENLEToiiiiiiiiii it e e s snraeee s 41
B.1.5 Application SErver iNtEQIratioNceeeeeiiiiiiiiiiiiieie e e e e e s s s s e e e e e e e e e s e s sannrrerreeeeaeees 42
B.1.6 IDE INTEQIAtiON ...cceeeeiiiiiiiiiieeee e e e et e et e e e e e e s s e e e e eae e e s e s e nnnbrrarerreeaeeeeaeaanns 43
7 o (] {1 1= Y=Y U] o P 44
B.2.1 JProfiler SEIUP WIZArdcoo it e e s r e e e e e e e s e s reeeeaaaeeas 44

2 N | = o] 11=T Tt =Y o = o PSSR 44
SR 1] 01 (= To = (o] o P SEERRRR 46
B.3.1 OVEIVIBW ...oieiiiie ettt ettt ettt e ettt e e s e sttt e e e bbb e e e e s anbb et e e e s anbbe e e e e sbbteeee s nnnnaeeee s 46
B.3.2 INtEIIIT IDEA ...ttt e ettt e e s ettt e e et b e e e e e bbe e e e e e nnbaeeee e e 46
B.3.3 ECIPSE 2. X / WSAD 5.X it iititieiiieeee e e ettt et e e e e e e e s e s st e e e e e e e e e s s annnnnrananeeeaaaeaeaanan 49

2 T T 10 1YY 20 R 52
B.3.5 IBIM RAD B.X teetiiiiitiiiieiiitiiiee e ittt e s sttt e et sttt e e s sttt e e s et b et e e e s an b n e e e e e nb b e e e s e nba e e e nnnaeeae s 54
SRR TSI | 201 o [T PO PRTRRTI 55
2T A 0 TV 1 o o = 58
B.3.8 NELDEANS ...oiiiiiiiiii ettt b e e e e e annnes 60
S Y T o= Vo [T JET= TS (o] o SRR 64
2 N R O YT V1= PP PPTPRTPI 64
(23 2 AN o] o] [Tor= 1 i o] g R~ 111V 1 S 65
23 N O 1Y V1= PR 65
B.4.2.2 LOCAI SESSION ...eiiiiiiiiiie et ie ettt ettt ettt e e e s sttt e e e s sa bt e e e e abbe e e e e s snbbe e e e e e ntbaeeeeean 66
B.4.2.3 REMOLE SESSIONiiiiiieeiiiiiie ettt e e sttt e e e s stb e e e e abbe e e e e s snbbeeeeesnsbaeeeenan 67

2 I A Y o] o] 1= Y=Y (o) o PR 68
B.4.2.5 WED SEArt SESSION ..ociiiiiiiie ettt et 69

2 I T B 1 Y == 111 [69
23R T O 1Y V1= PP PRP 69

S B 1Y i [ST {11 < £ 69

SR T A AT VA {11 (=] g (=T 70

B.4.3.4 FItEr tEMPIALESooiiiiiiiiii et e e e e e e e eeeeas 71
B.4.3.5 Exceptional Methodsuuiiiiiiiii e 71
B.4.3.6 1gN0red MENOAS ...t e e e e e 72
B.4.4 Profiling SELHNGSeeeeiiiiiieiiiiie ettt e e e e e e e e e s s b e e eaaaaeeas 73
B.4.4.1 OVEIVIEW ..ooiiiitiiiieiitie ettt ettt ettt e e skttt e s e e e e e s e et e s aeb et e e s annneee s 73
B.4.4.2 Method Call reCOIrdING ..ot 74
B.4.4.3 CPU ProfiliNg ...cooiiiiiiiiie ettt e e e e e e e e e as 75
B.4.4.4 JaVa SUDSYSIEIMS ...coiiiiiiiiiiiitetee ettt e e e e e et e e e e e e e e e e s e nnbeeaeeeeeeas 76
B.4.4.5 Memory Profiling ... 77
B.4.4.6 Thread Profiling ... 78
B.4.4.7 MiISCElIaN@OUS SEIINGSuveriiiiiiiieaiie ittt e e e e e e eeeeae s 78
B.4.4.8 Profiling Settings teMPIAEScoooiiiiiiiiee e 80
SR I g o o [g 11 T [P TP PUPRRRTTT 80
B.4.5.1 OVEIVIEW ..eoiiiitiiiiei ittt ettt ettt e e skt e e s st e e st e e s seb et e e s nnnne e e s 80
T N g To [[T G 4= (o PP PPPU TR RPP 81
B.4.5.3 TrHQQEr VENT LYPES ..oeiiiiiiiiiiiiitte ettt ettt e e e e e e e et e e e e e e e e e e e e e e nnnbeeneees 81
R0 A I o [[T =Tt 1o L PP PPT PP 84
S ST I o [o =T BT (TP TP PO PPRPPP 87
B.4.5.6 Adding triggers from Call trEESooiiiiiiiiiii e 87
B.4.5.7 Enabling and diSablingooiiiiiiiiiiii e 87
B.4.6 OPEN SESSION TIAI0Q .. .ueeeiiiiiiiieiie ettt e e e e e e e e e e e e e e e e e e e 88
B.4.7 SesSion Startup dialogccoooiieiiiiieiiie e a e 88
B.4.8 Starting remMOte SESSIONScciiiiiiiiiiiiiiiit et e e e et e e e e e e e s e e aebbe b e aeeeaaaaeaaeaaaaas 89
B.4.9 Remote sessions invocation table ... 93
B.4.10 Saving live SeSSIONS 10 AISKcciiiiiiiiiiiie e 101
B.4.11 Config SYNCAIONIZAtIONccoiiiiiiieeeei e 102
B.4.12 Importing and eXPOorting SESSIONScoicuuuiiiiiiiiiaae et ee e e e e e e e e s eeeeeaaaaaaeas 103
B.5 GENEIAl SEIINGS ..ottt e oottt et e e e e e e e st b e e e et e e e e e e e e e annbbabeeeeeeas 104
B.5.1 OVEIVIEWeeiiiiieiiteiee ettt ettt e sttt e e skt e e e e et e e s e e e s anb e e s s 104
B.5.2 JAVA VIMS ...ttt bbbt b e e bbe e nab e aee 104
B.5.3 SESSION EFAUILS ... 105
B.5.4 IDE INEQIAtIONSiieiiiiiiiiiie ettt e e e e e ettt e e e e e e e e e s e aaabbesreeeaeaeeeeaeaannnee 105
B.5.5 MIiSCEllan@0OUS OPLIONSccoiiiiiiiiieiee ettt e e e e e e e e e e e e e e e s s bbb eeeeas 105
B.6 PrOfilING VIBWS ...ttt ettt et e e e e e e e s e et ab e e reeeaaaeaeas 107
B.6.1 OVEIVIEWeeiiiieeiitiiie ettt ettt ettt e e sttt e e skt e s e bbbt e e s e e e e s b e e e s s 107
I ST Y 1= o T PO PO PP PP 108
B.6.3 EXPOrting VIEWS 10 HTIMLoiiiiiiiiiiiiii ettt e e e 112
B.6.4 QUICK SEAICN IN VIBWS ..ot e e e e e e e e 113
B.6.5 UNAOCKING VIBWS ...ttt ettt e e e ettt e e e e e e e e e s e s bt ab e e e eaaaaaaeeeas 113
B.6.6 SOMING tADIESooiiiieiii e 114
B.6.7 USING GFAPRS ..ottt e e e e e e e e bbbt e e et e e e e e e e e anb e brreeaaaaens 114
B.6.8 BOOKIMAIKSoeiiiiiiiiiiiiiiee ettt ettt et 114
B.6.9 Editing DOOKMAIKSuiiiiiiiiiiie ettt e e e e e e e e enaees 115
B.6.10 Source and DYtECOE VIBWETooiiiiiiiiiiiiiiie et 116
B.6.11 DYNamMIC VIEW FIlLEIS ... e e e e e e e 117
B.6.12 MEMOIY VIEW SECLIONteiiiiiiiiieeiiiiiitt ettt e e e ettt e e e e e e s e s sbb bt aeeeeaaaaeeeaaaaanes 118
BL6.12.1 OVEIVIEW .eeeueeiiiiiiieiiie ettt ettt ettt ekt e ettt et e e s bt e e sab e e e e kbt e e bb e e s abbe e e aabeeesabeeesnnneas 118
B.6.12.2 All ODJECES ...eieieiiiiie et 119
B.6.12.2.1 OVEIVIEW ...eeiiitiieiiie et ettt ettt ekttt ettt e et e e e s ab e e e ssbe e e sabe e e s beeesbee e e sabeeenees 119
B.6.12.2.2 SettingS dIiAlOgceeiiiiiiiiiiiiiiie et 120
B.6.12.3 RECOIdEA ODJECLSeiiiiiiiiiiiiie ettt e e e e e e e e 121
B.6.12.3.1 OVEIVIEW ...eeiiiiiieiiiie ettt e ettt ettt ettt et e e it e s it e e e st e e e sabe e e s beeesbae e e sabeeenees 121

B.6.12.3.2 SettingS dIiAlOgceeiiiiiiiiiiiiitee et 122

B.6.12.4 AIIOCALION CAll TrEE ...ttt e et e e e e st e e e nanas 124

B.6.12.4.1 OVEIVIEW ...eeiiiiiieiiiee ittt ettt ettt ettt et e et e st b e e st e e e aabe e e s beeesbee e e sabeeenees 124
B.6.12.4.2 Settings diAlOgcceiiiiiiiiiiiiitie e 127
B.6.12.5 Allocation NOt SPOLS VIEWuuieiiiiiiiieiiiiiiiit ettt 129
B.6.12.5.1 OVEIVIEW ...eeiiiiiieiiiii ettt ettt ettt ettt et e e st e e st e e e s abe e e s bae e e sabeeeeee 129
B.6.12.5.2 Settings dIialOgceeiiiiiiiiiiiiiiee et 133
B.6.12.6 ClasS traCKercoiiiiiiiiiiiii e 134
B.6.12.6.1 OVEIVIEWeiiitiiiiiiie it ettt ettt ekttt et e et e e s tb e e st e e e aabe e e s beeesbee e e sabeeennee 134
B.6.12.6.2 Class tracker options dialogc..uviiiiiiiiiiiiiiiee e 134
B.6.12.6.3 View Settings dialogcooiiiiiiiiiiiieiieeee e 134
B.6.12.7 Allocation optioNS dialOgcocuueviiiiiiiiiiee e 135
B.6.12.8 Class and package selection dialogcccuuueiiiiiiiiiiiiiii e 135
B.6.13 Heap WalKer VIEW SECLIONcciiiiiiiiiiiiiiie ettt e e e e e e e e e 137
B.6.13.1 OVEIVIEW .eueeiiiiiiie ittt ettt ettt ettt ettt e sttt e e st e e s st e e e ekt e e e bbe e e sbbe e e snbeeenabeeesnneeas 137
B.6.13.2 OPLioN AIAlOg ...cceeiiiiiiiiiiee ettt a e 138
B.6.13.3 VIEW IAYOULeeiiiiiiii ittt ettt et e e b e 139
B.6.13.4 ClASSES VIBW ..ottt e ettt e e e ettt e e e e e e e e e e et b beeeeaaaaeea e s 142
B.6.13.4.1 OVEIVIEW ...eeiiiiiieiitie ettt ettt ettt ettt ettt et e s ab e e e st e e e sabe e e s beeesbne e e sabeeennes 142
B.6.13.5 AIOCALION VIBWeieiiieiiiieeee ettt ettt ettt et e et e e s e s 144
B.6.13.5.1 OVEIVIEW ...eeiiiiiiiiiiie ettt ettt ettt ettt ettt e ettt e tb e e e st e e e sabe e e s be e e sbae e e sabeeenees 144
B.6.13.5.2 AlIOCALION TrEEeeiieiiitiiie ettt et e e 144
B.6.13.5.3 AllOCALION NOL SPOLSeeiiiiiiieiiiiiiiie ettt e e e e e 144
B.6.13.6 Biggest ODJECIS VIEWcooiiiiiee e 146
B.6.13.6.1 Biggest ODJECES VIEWcooiiiiiiiiiiiiie et e ettt e e e e e e 146
B.6.13.6.2 Dependency on retained size calculationccccccceeiiiiiiiniiiiieeeeen 147
B.6.13.7 REEIENCE VIBW ...ttt 148
B.6.13.7.1 OVEIVIEW ...eeiiitiieiitie ettt ettt ettt ettt et e e it e s it e e e s abe e e aabe e e s abb e e sbee e e sabeeennes 148
B.6.13.7.2 REfErenCe graphcooii oo 148
B.6.13.7.3 Tree of incoming referenCeSueeeiiiiiiiiiiiii e 152
B.6.13.7.4 Tree of outgoing refEreNCeScc.uuiiiiiiiiieee e 155
B.6.13.7.5 Cumulated inCOMINg refErenNCeS ..o 157
B.6.13.7.6 Cumulated outgoing refereNCESociiiiiiiiiiiiiiiiee e 159
B.6.13.7.7 Path to root option dialogcccueeviiiiiiiiie e 160
B.6.13.7.8 Restricted availability ..o 160
B.6.13.8 DAtB VIEWeeiiiuiiieitiie ettt ettt ettt ettt sttt e kbbb e et e et e e e st e e e anbe e e e nnneeaa 161
B.6.13.8.1 OVEIVIEWeiiiiiieiiiii et ettt et ettt ettt e ettt et e s tbe e e st e e e sabe e e s abeeesbne e e snbeeenes 161
B.6.13.8.2 INSTANCE GALAevvvieiiiiiiiie ittt 163
B.6.13.8.3 ClaSS TALAcouvveiiiiieiiiie ettt ettt be e 163
B.6.13.8.4 Restricted availability ... 164
B.6.13.9 TIME VIBW ..eeieiiiiiiie ittt ettt ettt ettt ettt e e ekt e e et e e s sbb e e e abn e e e enbeeennneas 165
B.6.13.9.1 OVEIVIEW ...eeiiiiiiiiiiie ettt ettt ettt et e et e st b e e e st e e e sabe e e s abe e e sbne e e sabeeennee 165
B.6.13.9.2 Restricted availability ... 166
B.6.13.10 View helper dialogcccuuiiiiiiiiiieeee e 168
B.6.13.11 SettingS QIl0Q .. cceeiiiiiiiiiiiiiee e 168
B.6.13.12 HPROF SNAPSNOLS ...cooiiiiiiiiieiiiie ittt 169
B.6.14 CPU VIEW SECHION ...eetiiiiitiiieeiitiiie e ettt e sttt e st e s ettt e s et bt e e e e bre e e e e anb e e e s e eneeas 170
BL6.14.1 OVEIVIEW ..euueiiiiiiie ittt ettt ettt ekttt ettt et bt e s bt e e sab e e e ekt e e e sbb e e e ek be e e sabeeesabeeeenneeas 170
B.6.14.2 Call trEE VIBW ...c.eeiiiiieiiieee ettt ettt ettt e e e 172
B.6.14.2.1 OVEIVIEW ...eeiiitiieiitie et ettt ettt ettt ettt ettt e et e sabe e e s sbe e e sabe e e s beeesbae e e snbeeennes 172
B.6.14.2.2 Show hidden elements dialogccceiiiiiiiiiiiiiiiie e 175
B.6.14.2.3 Settings dialOgceeiiiiiiiiiiiiitee e 175
B.6.14.3 HOt SPOL VIBWeeiiiiiiieieiiiiititte ettt ettt et e e e e e e s e s bbbt eeeaaaaeeeeaaannnnees 177
B.6.14.3.1 OVEIVIEW ...eeiiitiieiitie et ettt ettt ettt ettt et e et e e st e e e st e e e sabe e e s bbeesbne e e snbeeennes 177

B.6.14.3.2 Settings dialOgceeiiiiiiiiiiiiiie e 181

B.6.14.4 Call Graph ...oeeeeeeiiiieeee e 182

B.6.14.4.1 OVEIVIEW ...eeiiiiiiiiitie et ettt ettt ettt ettt ettt e ib e e sa b e e e sabe e e sabe e e s bbeesbee e e snbeeenees 182
B.6.14.4.2 Call graph WIZArdcooooiiiiiiiiiiee et 183
B.6.14.4.3 Node selection didlogcc.uuuieiiiiiiaiiaiiiie e 184
B.6.14.4.4 Settings dialOgcceiiiiiiiiiiiiite e 184
B.6.14.5 MethOd SAtISTICSceiiiiiiiiieeiiii ettt 186
B.6.14.5.1 OVEIVIEW ...eeiiiiiiiiiie ettt ettt ettt ettt ettt et e st e e st e e e sabe e e s abneesbae e e sabeeenes 186
B.6.14.5.2 SettingS dialOgceeiiiiiiiiiiiiiie e 187
B.6.14.6 CAll ITACETeiiiiiiiiee ettt et e e s e e e st r e e e e e e e e 189
B.6.14.6.1 OVEIVIEWeiiitiiiiitiee it ettt ettt ettt ettt ettt e et e sab e e e sabe e e aabe e e s beeesbee e e sabeeennes 189
B.6.14.6.2 Show hidden elements dialogccceiiiiiiiiiiiiiiiiee e 190
B.6.14.6.3 Settings dialOgcceiiiiiiiiiiiiie e 190
B.6.15 Threads VIEW SECHIONooiiiiiiiiieiiieeie ettt s s 192
BL6.15.1 OVEIVIEW .euetiiiiiiie ittt ettt ettt ettt ettt ettt e e st e e sab e e e ettt e e bn e e e abbe e e aabeeeanbeeesnneeas 192
B.6.15.2 Thread NiSLOrY VIBWcuuiiiiiiiiiiiia ettt e e ee e 193
B.6.15.2.1 OVEIVIEW ...eeiiiiiieiitie ettt ettt ettt ettt et e et e st e e sabe e e sabe e e s abbeesbee e e sabeeennee 193
B.6.15.2.2 SettingS dIiAlOgceeiiiiiiiiiiiiiiee et 195
B.6.15.3 Thread MONItOr VIEWcccoiiiiiiiiiiiiiiie ettt 196
B.6.15.3.1 OVEIVIEW ...eeiiiiiieiiiiee it e ettt ettt ettt e ettt ettt e et e s tb e e e sabe e e aabe e e s abeeesabee e e snbeeennes 196
B.6.15.3.2 Settings diAlOgceeiiiiiiiiiiiiiitie e 197
B.6.15.4 Thread dUMPS VIBW ..ot e ettt e e e e e e e e et e e e e e e e e e e s e ennbeeaeees 198
B.6.15.4.1 OVEIVIEWeiiiiiiiiitie ettt ettt ettt ettt ettt e et e e s ab e e st e e e sabe e e s beeesbee e e sabeeennes 198
B.6.16 MONITOT VIEW SECHIONveiiiiiiiiiiie it te ettt ettt ettt e st e e s es 199
BL6.16.1 OVEIVIEW ..ouueiiiiiiie ittt ettt ettt ettt ettt e sttt e e st e e sab e e e kbt e e bb e e s sbbe e e snbeeesabeeesnnneas 199
B.6.16.2 LOCKING Graphscoooiiii e 200
B.6.16.2.1 OVEIVIEW ...eeiiiiiieiitiieiitit ettt e ettt ettt e ettt ettt e e it e e e s ab e e e sabe e e sabe e e sbeeesbeeeesabeeenees 200
B.6.16.2.2 Current [0CKING graphccceuuiiiiiieiie et 201
B.6.16.2.3 Locking hiStOry graphoooo i 201
B.6.16.2.4 Settings diAlOgceeiiiiiiiiiiiiiiee e 203
B.6.16.3 MONITOI VIEWSceiiiiiiiiiei ittt ettt ettt e e s et e e e e e 204
B.6.16.3.1 OVEIVIEW ...eeiiiiiieiiiiie it ettt ettt ettt e ettt ettt e e it e sab e e e sabe e e sabe e e s abbeesabae e e sabeeenens 204
B.6.16.3.2 CUIMENT MONITOIS ...eeeiiiiiiiieeeiitii e ettt e et e e e e e e e e e 205
B.6.16.3.3 MONITOr NISEOIYcoiiiiiiiiiiiii e e e e e e e e e 205
B.6.16.3.4 Monitor NiStOry SEHINGScooiiiiiiiiieie e 205
B.6.16.4 MONItOr USAQE STALISTICSooieieiiiiiiieiie ettt e e e e e e e e e e e e e s e eanneees 206
B.6.16.4.1 OVEIVIEWeiiiiiiiiiie ettt ettt ettt e et ettt e et e e sabe e e s abe e e aabe e e s abeeesbee e e sabeeenees 206
B.6.16.4.2 OptioN di@lOg ... 206
B.6.17 VM telemetry VIEW SECLIONccuiiiiiiiiiiiiiiiieeie ettt e e e e e e 207
BL6.17.1 OVEIVIEW eeueeiiiiiiie ittt ettt ettt ettt ettt ettt e st e e sab e e e e bt e e e bb e e e ab b e e e anbe e e sabeeesnnneas 207
B.6.17.2 SEttiNgS TIAl0Qeeeiiiiieiiiiiiitee e 209
B.7 SNAPShOt COMPATISONSiiiiiiiiiieiee ettt e e e e e e e et e e et e e e e e e s e s annbbebeeeeaeaaeeeeesannnnes 210
B.7.0 OVEIVIEBWeeiiiieeiiteeee ettt ettt et e e st e e sk et e s s bbb et e e s e e e s abbr et e e s s 210
B.7.2 MEMOIY COMPATISONS ..cciiiiiiiiiiiitiete et e e e e e e ettt et e e e e e e s e s e b bbb ae e et e aaaeeesesannnbbeneeeas 213
B.7.2.1 OVEIVIEW ...eiiiiiiiiiiie ettt ettt ettt ettt et e e ekt e e et et e s eb b e e e snb e e e snbeeeenneeas 213
B.7.2.2 ODJECLS COMPAIISON ...coiiiiiaiiiiiiiiiittie et e e e e e e ettt et e e e e e e e e e aaaanbbbbbeeeaaaaeaeeasaaannne 213
B.7.2.2.1 OVEIVIBW ...ttt ettt ettt ettt et et s e e e st et e s be e e s bae e e sabeeeeee 213
B.7.2.2.2 SettiNgS dIAlI0Q ...eereeiiiiiiiiiiii e 214
B.7.2.3 Allocation hot SPOt COMPATISONceiiiiiiiiiiiie it 215
B.7.2.3.1 OVEIVIBW ...ttt ettt ettt ettt e sttt e e st et e s be e e sbee e e nabeeeeee 215
B.7.2.3.2 SettiNgS dIiAl0Qeeeeeiiiieiiiiiiee e e e 215
B.7.2.4 AllOCation tre@ COMPAIISONueieiiiieaeeeiiiiiitttieeeeeeae e e e e s s aiibbbe e e eaaaaeeeeesaaaennreeeeees 216
B.7.2.4.1 OVEIVIBWeeiiiiiiee itttk e et et st e e st et e s be e e sbae e e snbeeenees 216
B.7.2.4.2 SEiNGS IAI0Q ...eeeeiiiiiiiiiiiiiiee e e a e 217

B.7.3 CPU COMPAIISONS ...ceiiiiiiiittite et e e e ettt ettt e e e e e e e e e s sttt e e e e e e e e e e e e s s annbbabeeeeeaeaaaaaans 219

B.7.3.1 OVEIVIEW ..oiiiiiiiiiie ettt ettt e et e e st e e et e e e et e e e e e e e e s 219

B.7.3.2 HOt SPOt COMPATISONciiiiiiiieiiiee ettt e e ettt e e e e e e e e s s bbb e e eeaaaaaeas 219
B.7.3.2.1 OVEIVIBWeeiiiiiiee ittt ettt ettt ettt e sttt e e st et e s bn e e sbne e e snbe e e e 219
B.7.3.2.2 SettiNgS dIiAl0Qeeeeiiiiieiiiii i 220

B.7.3.3 Call tre@ COMPAIISONutiiiiiiiiiieaee ettt e e e e ettt e e e e e e e e e s e e eeeeaaaaaeas 220
B.7.3.3. 1 OVEIVIBW ...ttt ettt ettt ettt et ettt s bt e e sabe e e s be e e sba e e e sabe e e e 220
B.7.3.3.2 SettiNgS dIiAl0Qeeeeeiiiiiiiiiiii e 221

B.7.4 VM telemetry COMPANISONSccciiiiiiiiiiiiiiiieiie et e e e e e ettt et e e e e e e s e s sebbb e aeeeeaaaaaeeaaaannns 223
B.7.4.1 OVEIVIEW ...eiiniiiiiiiiie ettt ettt ettt et et e e e kbt e e be e e e eb b e e e snbe e e anbeeesnneeas 223
B.7.4.2 SENGS QIAI0Q .. .eeeeiiiiiieiiiei et e e e e 224

B.8 OffliNe ProfiliNgeeeiiiiiieiii et e e e e e e 225

B.8.1 OVEIVIEW ...ttt ettt s ettt e e sk et e s et e e s e e e e a e e s 225

BL8.2 AN LASK ...eeiiiii ittt b e abreeaa 227

B.8.3 Profiling AP ... 229

B.9 ComMMANd [INE@ EXPOITueeiiieiieieee ettt e e e e e e e s ettt e e e e e e e e e e e e nnnbreeeees 230

B.O.1 SNAPSNOLS ...eeeeiiiiiiieii ittt e e e e e e e e e e r e e e e e e e e e e e aaa 230

BLO. 1.1 OVEIVIEW ..eeiiiiiiiiiii ettt ettt ettt ettt ekttt s e st e e ekt e e e bb e e e skt e e e aabe e e sabeeeenneeas 230

B.9.1.2 Command [iN€ eXECULADIEoviiiiiiiiie e 231

BLO.1.3 ANE ASK .ttt e e b s 237

B.9.2 COMPAIISONS ...etiiiiiiieieee ittt e ettt e e e e e e e s s e a bbbt bt e et e aaeeesesaanabbenaeeeaaaaeens 239
BLO.2.1 OVEIVIEW ...eiiiiiiiiiit ettt ettt ettt ettt et e e e kbt e e bb e e s eb b e e e aab e e e sabeeesnneeas 239
B.9.2.2 Command [iN€ eXECULADIEcoviiiiiiiiie e 240

BLO.2.3 AN TASK ...eeeiiiiiiieiie et 245

Welcome To JProfiler

Thank you for choosing JProfiler. To help you get acquainted with JProfiler's features, this manual is
divided into two sections:

» Help topics [p. 9]

Help topics present important concepts in JProfiler. They are not necessarily tied to a single view.
Help topics are recommended reading for all JProfiler users.

The help topics section does not cover all aspects of JProfiler. Please turn to the reference section
for an exhaustive explanation of all features that can be found in JProfiler.

» Reference [p. 40]

The reference section covers all views, all dialogs and all features of JProfiler. It is highly hierarchical
and not optimized for systematic reading.

The reference section is the basis for JProfiler's context sensitive help system. Each view and each
dialog have one or more corresponding items in the reference section.

We appreciate your feedback. If you feel that there's a lack of documentation in a certain area of if
you find inaccuracies in the documentation, please don't hesitate to contact us at
support@ej-technologies.com.

mailto:support@ej-technologies.com

How To Order

JProfiler licenses can be purchased easily and securely online. We accept credit cards from Visa,
MasterCard/Eurocard, American Express, JCB and Diners Club. You can also pay via bank transfer,
via check or in cash.

For pricing information ant to order JProfiler please visit our shop.

For large quantities or site licenses please contact sales@ej-technologies.com.

http://www.ej-technologies.com/redir.php?target=prices
http://www.ej-technologies.com/redir.php?target=sales&type=sales

A Help topics

A.1 Background and configuration

A.1.1 Behind The Scenes - How Profiling Actually Works
Introduction

Although it is not necessary to know about the internals of profiling to successfully profile your
application, it can help you to interpret data that is produced by JProfiler, be more confident when
setting up application servers and remote applications for profiling and analyzing problems with
profiling in general. You might also just be curious to know what's going on under the hood.

Time, space and thread profilers

If you've been profiling C applications, you might know the distinction between time and space profilers.
A "time profiler" measures the execution paths of your application on the method level whereas a
"space profiler" gives you insight into the development of the heap, such as which methods allocate
most memory. Recently, more and more applications are multi-threaded and thread profilers have
been developed to analyze thread synchronization issues.

Most or these traditional profilers are "post-mortem" profilers where the profiling wrapper or profiling
agent code writes out a data file when the profiled application exits. For an interactive profiler, it makes
sense to compare and correlate data from all three domains, so JProfiler combines time, space and
thread profilers in a single application.

How profilers collect data

A profiler must have some means to collect the data it displays. Profiling data can come from an
interface in the execution environment or it can be generated by instrumenting the application
of the application.

One of the most basic common profilers, the Unix shell command ti me, acts as a wrapper to the
profiled executable and retrieves post-mortem information about the process from the kernel. Profilers
for native applications on Microsoft Windows can attach to running applications and receive available
debug information to calculate their profiling data. These are examples of interfaces in the execution
environment where the the binary of your application are not modified by the profiler.

The gpr of Unix profiler (part of Unix since 4.2bsd UNIX in 1983) can be hooked into the compilation
process by specifying an additional argument to the compiler (- pg). In this way, profiling code is
added to your application. When the application exits, a data file is written to disk that contains call
trees and execution times to be viewed with the gprof application. gprof is an example of a profiler
that instruments your application.

JProfiler takes a mixed approach. It uses the profiling interface of the JVM and instruments classes
at load time for tasks where the profiling interface of the JVM doesn't provide any data or adequate
performance.

The profiling interface of the JVM

The profiling interface of the JVM is intended for profiling agents that are written in C or C++. If you
open the i ncl ude directory in your JDK, you will see a number of files with the extension . h. Those
are the header files that tell a C/C++ library about the interface that is offered by the JVM. The basis
for all communication between a native library and the JVM is the Java Native Interface (JNI), defined
injni.h.

The JNI allows Java code to call methods in the native library and vice versa. From Java code, you
can use the Syst em | oad() call to load a native library into the same memory space. When you
call a method whose declaration contains the "native" modifier, such as publ i ¢ native String
get Nanme() ; , a function in the list of loaded native libraries is searched for. The required name pattern

-9-

of the corresponding C-function contains the package, the class and the method of the declaration
in Java code. JNI also defines how Java data types are represented in a C/C++ library. When the
native C-function is called, it gets a "JNI environment" interface as an additional parameter. With this
environment interface, it can call Java methods, convert between C and Java data types, and perform
other JVM specific operation such as creating Java threads and synchronizing on a Java monitor.

Until Java 1.5, Sun offered an ad-hoc profiling interface for tool vendors, the Java Virtual Machine
Profiling Interface (JVMPI). The JVMPI was not standardized and its behavior varied considerably
across different JVMs. In addition, the JVMPI was not able to run with modern garbage collectors
and had problems when profiling very large heaps. With Java 1.5, the JVM Tool Interface (JVMTI)
was added to the Java platform to overcome these problems. JProfiler supports both JVMPI and
JVMTI. The interfaces are defined ininj vipi . handj vnt i . h They utilize the JNI for communication
with the JVM, but provide an additional interface to configure profiling options. JVMPI and JVMTI are
event-based systems. The profiling agent library can register handler functions for different events.
It can then enable or disable selected events.

Disabling events is important for reducing the overhead of the profiler. For example, in JProfiler, object
allocation recording is switched off by default. When you switch on allocation recording in the GUI,
the profiling agent tells the JVMPI/JVMTI interface that the event for object allocations should be
enabled. If a lot of objects are created, this can produce a considerable overhead, both in the JVM
itself as well in the profiling agent that has to perform bookkeeping operations for each event. During
the startup phase of an application server, a lot of objects are created that you're most likely not
interested in. Consequently, it's a good idea to leave object allocation recording switched off during
that time. It increases the performance of the profiled application and reduces clutter in the generated
data. The same goes for the measurement of method calls, called "CPU profiling" in JProfiler.

The JVMPI/IJVMTI interface offers the following types of event:

« Events for the life-cycle of the JVM

The profiling agent is active before the JVM has been fully initialized. It can monitor how core
classes are loaded and what method calls are executed during the initialization phase. When the
JVM is initialized just before the main method is called, the profiling agent is notified. Similarly, the
impending shutdown of the JVM is reported.

« Events for the life-cycle of classes

When a class is loaded and when it is unloaded, the profiling agent can be notified by the
JVMPI/IJVMTI. All other events, like the object allocation events or the method call events use the
integer class ids and the the method ids that are reported with this event. Before a class is loaded,
the profiling agent gets a chance to inspect and modify the content of the class file. This is the
basis for "dynamic instrumentation" where bytecode is injected into the class file before it is actually
loaded by the JVM.

« Events for the life-cycle of threads

To be able to show separate call trees for separate threads as well as to analyze monitor contention,
the profiling agent must be aware of when threads are created and destroyed. When a thread is
started, its identity is established. All other JVMPI/JVMTI events have a pointer that identifies the
originating thread.

« Events for for the life-cycle of objects

The profiling agent can be notified of when objects are allocated, freed and moved in memory by
the garbage collector. At this point, the call stack of the allocation spot can be recorded by the
profiling agent. If the object allocation event is switched off, the allocation spot will not available
for the object later on. Such objects show up as "unrecorded objects" in the heap walker.

e Events for method calls (JVMPI only)

The JVMPI can be told to report the entry and the exit for each method. In JProfiler this is called
"Full instrumentation”. Full instrumentation is generally not recommended, since the overhead of

-10 -

reporting every single method call in the JVM is very large. The JVMTI profiling interface does not
offer this instrumentation type since it doesn't play well with hotspot compilation.

« Events for monitor contention

Whenever you call synchronized methods, use the synchr oni ze keyword or call Obj ect . wai t (),
the JVM uses Java monitors. Events that concern these monitors, such as trying to enter a monitor,
entering a monitor, exiting a monitor or waiting on a monitor are reported to the profiling agent.
From this data, the deadlock graph and the monitor contention views are generated in JProfiler.

e Events for the garbage collector

Garbage collector activity is reported to the profiling agent. The garbage collector telemetry view
in JProfiler is based on these events.

Some information, like references between objects as well as the data in objects, are not available
from the events that the JVMPI/JVMTI fires. To get exhaustive information on all objects on the heap,
the profiling agent can trigger a "heap dump". This command is invoked when you take a snapshot
in the heap walker. The heap dump is performed differently for JVMPI and JVMTI: The JVMPI packs
all the objects on the heap and the references between them into a single byte array and passes it
to the profiling agent. That byte array is then parsed by the profiler and converted to an internal
representation. Naturally, the memory requirements of this operation are huge: first, the heap is
essentially duplicated in the byte array, then the profiling agent must parse it and translated it to data
structures. In order to reduce the peak of the memory requirement, JProfiler saves the byte array to
a temporary file on disk, releases the array and parses the contents of the temporary file. When
profiling an application that maxes out the available physical memory, taking a heap dump can crash
the JVM, simply because not enough physical memory is available to allocate the huge required
regions of memory. With JVMTI (>= 1.5) the situation has much improved. With JVMTI, JProfiler can
enumerate all existing references in the heap and build up its own data structures.

How the profiling agent is activated

Unlike a JNI library that you load and invoke from Java code, the profiling agent has to be activated
at the very beginning of the JVM startup. This is achieved by adding the special JVM parameters

- Xrunjprofiler
for Java <=1.4.2 (JVMPI) or

-agentpath:[path to jprofilerti library]

for Java >=1.5.0 (JVMTI) to the java command line. The - Xr un or - agent pat h: parts tell the JVM
that a JVMPI/IJVMTI profiling agent should be loaded and the remaining characters of the parameter
constitute the name of the native library. The canonical name of a native library depends of the
platform. For a base name of j pr of i | er, the library nameisj profil er. dl | on Microsoft Windows,
i bjprofiler.soonLinuxand most Unix variants, and | i bj profil er. dyli b on Mac OS X.

Parameters can be passed to the native profiling library by appending a colon for the JVMPI or an
equal sign for the JVMTI to the profiling interface VM parameter and placing the parameter string
behind it. If you pass the -Xrunjprofiler:port=10000 or -agentpath:[path to
jprofilerti I|ibrary]=port=100000n the Java command line, the parameter port =10000
will be passed to the profiling agent.

If the JVM cannot load the specified native library, it quits with an error message. If it succeeds in
loading the library, it calls a special function in the library to give the profiling agent a chance to initialize
itself.

Profiling agent and profiling GUI

-11 -

Unlike basic profilers that collect data and write out a data file to disk, advanced profilers can display
the profiling data at runtime. Although it would be possible to start the GUI directly from the profiling
agent, it would be a bad idea to do so, since the profiled process would be disturbed by the secondary
application and remote profiling would not be possible. Because of this, the JProfiler GUI is started
separately and runs in a separate JVM. The communication between the profiling agent and the GUI
is via a TCP/IP network socket. This is also the case if you start applications in JProfiler that are
configured as "local" sessions.

In order to profile successfully, it's important to choose the right profiling parameters, especially the
filters that limit the extent of the recorded call tree. Since this information is required at startup, the
profiling agent stops the JVM and waits for a connection from the GUI where these parameters are
configured. Once the connection has been established, the profiled application is allowed to start up.

The recorded profiling data resides in the internal data structures of the profiling agent. Only a small
part of the recorded data is actually transferred to the GUI. For example, if you open the call tree or
the back-traces in the hotspots views, only the next few levels are transferred from the agent to the
GUL. If the entire call tree were transferred to the GUI, potentially big amounts of data would have to
be transmitted through the socket. This would make the profiled process slower and remote profiling
between different computers would not be feasible. In essence, you could say that the profiling agent
keeps a database of the recorded profiling data while the GUI is a client that sends user-initiated
queries to the database.

-12 -

A.1.2 Configuring Profiling Settings
What are profiling settings?

Profiling settings are settings that control the way profiling data is recorded. On older JVMs (1.5.0
and earlier), they must be adjusted according to your personal needs before the session is started.
For modern JVMs (1.6.0 and later), JProfiler is able to change profiling settings at runtime. Any change
in the profiling settings clears all recorded data. View settings can be changed during a running
session without loss of recorded data. The primary distinction between profiling settings and view
settings is that profiling settings determine how much data is recorded.

Profiling settings are persistent, just like view settings. Every change you make to the profiling settings
will be remembered across restarts. The help on sessions [p. 64] explains under what circumstances
changes in the profiling settings can be applied to an active session.

Limiting the recorded profiling data

Why doesn't JProfiler just record everything it can and show it to the user? The answer is twofold:

e There's a trade-off between information depth and runtime overhead

Profiling adds overhead to the profiled application. It runs more slowly and consumes more memory.
As an example, consider the call tree. JProfiler record separate call trees for each thread. If all
method calls in all classes are recorded, the profiling agent has to do a lot of bookkeeping operations
and its internal data structures use a lot of memory.

* You want to reduce clutter in the recorded data

Maximum detail doesn't lead to maximum insight. On the contrary, excessive detail will often be
in the way. If there's too much information available, you're likely to get lost in it. Let's continue the
above example: most of the time, you're not interested in the internal call tree of framework classes.
Say, if you call HashMap. get (), the sufficiently detailed information will be the duration of this
call. When you're not familiar with an implementation or if you're not in control of it, the internal
calls structure is not helpful information, but rather just clutter, that you can ignore.

In principle, reducing the information depth can be done after recording. The view filters in the CPU
views are such an example: the internal call structure of all classes that do no match the selected
view filter is removed from the call tree. However, especially the increased memory consumption of
profiling is critical: if you do not have enough physical memory available, the profiled JVM might
become unstable or even crash. So in practice, you should record as little data as possible. With
appropriate profiling settings you choose the required detail while retaining an acceptable runtime
performance.

Profiling settings templates

At first, the number of profiling settings can be quite overwhelming and the performance implications
might not be quite clear. Because of this, JProfiler offers templates for profiling settings. When you
start a session, a dialog is displayed where you can select one of several pre-defined templates.
Below the combo box, a description and two overhead meters for CPU and memory overhead help
you in judging whether the profiling settings are acceptable for you. Please note that the overhead
meters do not give any absolute values, that would not even be possible theoretically, as JProfiler
has no way of knowing the runtime characteristics of your application. Rather, they are hints that allow
you to compare different profiling settings.

Each profiling settings template defines certain values for the profiling settings that can be viewed
and modified by clicking the [Customize profiling settings and filters] button. When you modify
and save those settings, the template combo box displays that the profiling settings are "Customized".

Accessing the profiling settings

There are three locations where you can access the profiling settings in JProfiler.

-13-

in the profiling settings dialog that is displayed before a session is started

When you define a new session, the default profiling settings template is used. Every time a session
is started, a dialog is displayed that allows you to change this template or customize the settings
in detail (see above).

from the menu or tool bar

When a session is running, you can choose Session->Application settings from the main menu or
click on the corresponding tool bar button. You can look at the current profiling settings and you
can even change them. However, changes in the profiling settings are not applied immediately,
they will become effective the next time the session is started.

in the application settings dialog

If you want to compare the profiling settings of two sessions, you can edit them in the start center.
This shows the application settings dialog where you click the [Profiling settings] button that is
located at the bottom. This is intended to let you review the profiling settings of existing sessions.

Overview of the various profiling settings

The most important profiling settings are:

« the method call recording type

This profiling settings determines performance overhead and informational detail in the CPU and
memory views that show call trees. A detailed presentation of the various method call recording
types is available in a separate article [p. 15] .

the call tree filters

The call tree filters determine the detail that is shown in any call tree or call stack in JProfiler. In
brief, they define the set of classes whose internal call structure is shown while method calls into
all other classes are treated as opaque. Please see the article on call tree filters [p. 17] for a
thorough discussion.

-14 -

A.1.3 Method Call Recording - Collection Methods and Influence on Performance and Data
Call trees and call stacks

At first glance, it might seem that the method call recording settings only influence the CPU section
of JProfiler. However, the memory section as well as the thread section display information that
originates from the call tree that is built by the profiling agent of JProfiler: the call tree view, the
allocation call tree, the stack traces in the monitor views and locking graphs as well as many other
views all depend on the same call tree. The call tree is always recorded, even if "CPU recording" is
switched off in JProfiler.

Selecting the right method call recording type is crucial for a successful profiling run. As explained in
the article on profiling settings [p. 13], the aim is to get the best runtime performance while retaining
an acceptable level of informational detail. While the most important profiling setting in this regard is
the filter configuration [p. 17], the method call recording type complements this choice. Each method
call recording type has various limitations that you have to bear in mind when configuring call tree
filters.

The different types of method call recording

There are three different methods for recording the call tree that have different advantages and
disadvantages:

¢ Dynamic instrumentation

This is JProfiler's default mode. Before unfiltered classes are loaded by the JVM, JProfiler injects
bytecode into the methods of that class that report the entry and exit of a method as well as the
invocation of any filtered method. Filtered classes are not touched and run without overhead. If
most classes are filtered, this mode causes low overhead while providing highly detailed
measurements. Typically, the entire JRE and any framework classes are filtered so that dynamic
instrumentation is most often the best choice. Since there are some classes in the j ava. * and
sun. * packages that the profiling agent does not get a chance to modify, the internal calls of these
packages cannot be resolved with dynamic instrumentation. However, for most applications this
is not a problem.

e Sampling

"Sampling" means to periodically take measurements that are called "samples”. In the case of
profiling, an additional thread periodically halts the entire JVM and inspects the call stack of each
thread. The period is typically 5 ms, so that a large number of method calls can occur between
two samples.

The advantage of sampling is that its performance overhead is not very sensitive to the filter settings.
Even without any filters, sampling is still fast since it operates with big granularity in time. You might
ask why it is not possible to decrease the sampling time into the microsecond range to achieve a
better resolution. The answer is that the process of sampling is a very expensive operation. Halting
the entire JVM and querying the call stacks of a threads takes a lot of time. If you do this too often,
sampling will actually become slower than dynamic or full instrumentation.

Sampling has two other important informational deficiencies: Since sampling does not monitor the
entry and the exit of method calls, there's no invocation count in the CPU views of JProfiler.
Furthermore, the allocation spots for objects are only approximate. The actual call stack might
always be deeper than the reported one. Consider the above example where objects allocated by
B. subOp() betweentime x and time x + 5 ms are reported as being allocated by B. cal cul at e() .
The problem is that this informational deficiency is not systematic, but statistical: the confusion
sets in when at some later time two subsequent samples both produce the first call stack. Now
some obijects that are allocated by B. subQOp() are reported correctly, but not all of them. To get
around this deficiency, JProfiler has an option to record the exact allocation spots for sampling. In
this case, the profiling agent does not rely on the call tree as recorded by the sampler. Rather,
after each object allocation, it queries the JVMPI/JVMTI for the call stack of the current thread.

-15-

However, this is an expensive operation and if you create a lot of objects the performance of the
profiled application may suffer quite a lot.

To conclude, sampling is best suited for performance bottleneck searches with all filters turned off.

Full instrumentation

The profiling agent can ask the JVMPI/JVMTI to report each and every method call, so that the
profiling agent can measure it. While this may sound like a good idea at first, in practice, the
performance overhead of this "full instrumentation” is too large. Except when you have to display
the internal call structure of classes inthe j ava. * and sun. * packages, this method call recording
type is not recommended.

-16 -

A.1.4 Filters for Method Call Recording - How They Work and How They Are Configured

Introduction

Method call recording filters determine the detail level that JProfiler uses when recording call sequences
in the profiled application. Filtering helps to eliminate clutter and decrease the profiling overhead for
the profiled application. Also see the article on profiling settings [p. 13] for a discussion of profiling
settings in general.

Since the internal data storage of CPU data in JProfiler is similar to the invocation tree, method call
recording filters are most easily explained while looking at the call tree view [p. 172]. As an example,
we profile the "Animated Bezier Curve" demo session that comes with JProfiler. When talking about
filters, it is important to define the distinction between your code and framework or library code. Your
code should be unfiltered, framework or library code should be filtered. In our example, the
Bezi er Ani mclass is code written by you and the JRE is library code.

What are method call recording filters?

The call tree shows call sequences. Each node and each leaf of the call tree corresponds to a certain
call stack that has existed one or multiple times while CPU recording was switched on. You will notice
that there are different icons for nodes in the tree. Among other things, these icons serve to highlight
if classes are filtered or not.

The methods of a filtered class (alternatively the class or containing package itself, depending on the
aggregation level) are endpoints in the call tree, i.e. their internal call structure will not be displayed.
Also, any methods in other filtered classes that are called subsequently, are not resolved. If, at any
later point in the call sequence, the method of an unfiltered class is called, it will be displayed normally.

In that case, the call tree shows the filtered parent method with a ¥ special icon that indicates that
it is from a filtered class and that there may be other method calls in between. The inherent time of
those missing method is added to the time of the filtered parent method. In JProfiler's terminology,
this is called an "upward filter bag".

Example with and without filters
The image below illustrates the different node types for a profiling run of the BezierAnim class:
[(Q) 72.7% - 7782 ms - 0inv. java.awt.EventDispatchThread.run | Upward filter bag -java.* is filtered

- Ty 68.7% - 7350 ms - F85 v, BezierAnim$Demo. pain but BezierAnim is not

©- (g 49.2% - 5266 ms - 399 inv. BezierAnim$Demno. drawDema
(=3 37.3% - 3987 ms - 899 inv. java.awt.Graphics2D.fil

(3 11.3% - 1209 ms - 599 inv, java.awt.Graphics2D . draw
() 0.1% - 1Zms - 899 inv, java.awt.geom.GeneralPath. <init >
(>3 0.1% - 9 ms - 5394 inv, java.awk,geom.GeneralPath, curveTo)))
[() 0.1% - 9 s - 1798 inv. java.awk. Graphics2D, setPaint]E"dpﬂ"ﬂ -java.” is filtered and
T3 0.0% - 5 ms - 599 inv, java,awk.geom, GeneralPath.moveTo java.awt.Graphics2D.setPaint
0,0% - 2 ms - 899 inv, java,awk, Graphics2D, setStroke does not call methods
33 0.0% - L ms - 899 inv. java,awt.geom. GeneralPath.closePath of ynfiltered classes
3 16,8% - 1796 ms - 898 inv, java,awt, Graphics,drawlmage
[&= & 2.2% - 236 ms - 899 inv. BezierAnim$Dema. createGraphics?h | Regular node method -
@~ (g4 0.3% - 28 ms - 899 inv. BezierAnim$Demo.step BezierAnim is unfiltered and
fz) 0.1% - 8 ms - 899 inv, java.awt, Component, getSize createGraphics2D calls other
) 0.0% - 2 ms - 898 inv, java.awt.Graphics, dispose methods
@ (3 0.0% - 1 ms - 2 inv, BegierAnim$DemaControls$PaintedIcon, paintIcon
o w_“' 27.0% - 2892 ms - 1 inv. BezierAnim$Demo.rn
@ §¥ 0.2% - 24 ms - 0 inv, Bezierdnim, main

In the above call tree, the j ava. * package is filtered, so only the first method in the the AWT event
dispatch thread is shown. However, the AWT is a complex system and the
j ava. awt . Event Di spat chThr ead. run() does not call Bezi er Ani m pai nt () directly. If we
switch to full instrumentation and disable all filters, the call tree looks like this:

-17 -

ﬁ 74,9% - 27355 ms - 0inv, java,awt.EventDispatchThread, run
- ms - 0inv, java,awt EventDispatchThread, pumpEvents
@ o 74.9% - 7355 ms - 0 inv. java.awt.EventDispatchThread. pumpEvents
@ 3 74.9% - 27355 ms - Dinv, java, awk, EventDispatchThread, pumpEventsFarHierarchy
@ (3 74.8% - 27325 ms - 1605 inv. java, awt,EventDispatchThread, pumpCneEventForHierarchy
©- (5 74.5% - 27212 ms - 1606 inv. java.awt EvertQueue. dispatchEvert
O iy ?;4‘ 1% - 27068 ms - 1598 inv, java.awt.event, InvocationEvent. dispatch
Lo 5] ?:I.U% - 27050 ms - 1578 inv, javax.swing. SystemEventQueueltilties$ Component\WorkRequest. run
2R+] 73.7%‘u - 26031 ms - 1578 inv, javax.swing.RepaintManaget . paintDirtyRegions
o iRy ?ﬂ2‘4% - 26439 ms - 1578 inv. javas.swing. JComponent. paintImmediately
Lol <] ?;.1% - 26354 ms - 1578 inv. javax.swing. JComponent._paintImmediately
§- (3 67.0% - 24469 ms - 1578 inv. javax, swing, J_ompanent, paintDoubleBuffered
4 65,9% - 24097 ms - 1578 inv, javax.swing, JComponent, paintWithOffscreenBuff

©- (i 62.3% - 22760 ms - 1578 inv. BezierAnim$Demo. paint

@ (34 49.2% - 17954 ms - 1575 inv. BezisrAnim$Dema.drawDemo
©- (34 32,6% - 11897 ms - 1577 inv, sun.javazd, sunGraphics20.fill
9= (g4 15 7% - 5736 ms - 1575 inv, sun.javazd, SunGraphics20, draw
& gy 0.5% - 91 ms - 3155 inv. sun javaZd.Suniraphics2D. setPaint |
[oREE] 0.1% - 3T ms - 1578 v, sun.javazd, suntraphics2D , sefColar
G- 0.1% - 20ms - 1578 inv. sun.javazd.SurfaceData, pixelFar
@ (4 0.0% - 11 ms - 1578 inv. sun. java2d.loops. SurfaceTyp
%) 0.0% - 3 ms - 1578 inv. sun.awk.image. PixelConve
@ yj 011% - 24 ms - 1577 inv, java.awt.GradientPaint .getTransparer
(=) 0.0% - 8 ms - 3156 inv, java.awt, Color.getAlpha
73 0.0% - 5 ms - 1577 inv. sun.java2d,SunGraphics2D.invalidateri
n S

Now, the entry method into your code - Bezi er Ani m pai nt () - is substantially more difficult to
find. In cases where events are propagated through a complex container hierarchy, the call tree can
become many hundreds of levels deep and it becomes next to impossible to interpret the data. In
addition, calls like java.awt . G aphi cs2D. set Pai nt () show their internal structure and
implementation classes. As a Java programmer who is not working on the JRE itself, you probably
do not know or care that the implementation class is actually sun. j ava2d. SunG aphi cs2D. Also,
the internal call structure is most likely not relevant for you, since you have no control over the
implementation. It just distracts from the main goal: how to improve the performance of your code.

Not only is it easier to interpret a call tree that has proper method call recording filters, but also the
profiling overhead of the profiled application is much lower. Recording the entire call tree without
filters uses a lot of memory and measuring each call takes a lot of time. Both these considerations
especially apply to application servers, where the surrounding framework is often extremely complex
and the proportion of executed framework code to your own code might be very big.

Configuring method call recording filters

Method call recording filters are part of the profiling settings of a session. Please see the article on
profiling settings [p. 13] for an explanation on how to change the profiling settings for a session. The
help on sessions [p. 64] explains under what circumstances changes in the profiling settings can be
applied to an active session.

There are two alternative ways in JProfiler to specify the filtered classes:

¢ by defining exclusive filters

By default, a profiling session uses exclusive filters. "Exclusive filters" means that you specify a
list of packages that should be filtered. In order to facilitate working with exclusive filters, you do
not have to enter the list of packages in a text field but rather select appropriate "filter sets". Filter
sets are named lists of packages that apply to a certain software library, application server or
software company. The "Bea WebLogic" filter set contains all packages that are part of the Bea
WebLogic application server. Filter sets are defined in JProfiler's general settings and are globally
available for all sessions.

For a new profiling session, all filter sets are activated. If you want to resolve classes in a filtered
package, you have to deselect the corresponding filter set in the profiling settings.

Exclusive filters are most appropriate for profiling application servers and regular applications
where you're interested in all classes except a set of well-defined framework and library classes.
If you have more specific requirements with respect to filtering, inclusive filters might be the better
choice.

* by defining inclusive filters

-18-

With inclusive filters you define a list of packages and classes that should not be filtered. The call
tree is only resolved for packages and classes that you have specified, all other classes are filtered.

This approach is recommended if you have a lot of different library or framework classes that are
not contained in JProfiler's default list of filter sets, or if your code base is very large and you're
only interested in certain parts of it.

View filters

In addition to the method call recording filters, there is a view filters control at the bottom of all views
that display call trees. View filters are similar to inclusive filters and can be changed during a session.
However, they can only reduce the recorded information by taking out classes that do not correspond
to the selected view filter.

In the call tree, they have a similar behavior like the call tree collection filters. In the hot spot views,
they simply hide all classes that do not correspond to the filter selection. This is very different from
method call recording filters, where the hot spots themselves change with different filter settings.

-19-

A.1.5 Remote Profiling - Application Servers and Standalone Applications
Introduction

Although it is easiest to profile applications and application servers that are running on your local
machine, sometimes it is not possible to replicate the execution environment on your computer. If
you have no physical access to the remote machine or if the remote machine has no GUI where you
could run JProfiler, you have to set up remote profiling.

Remote profiling means that the profiling agent is running on the remote machine and the JProfiler
GUIl is running on your local machine. Profiling agent and JProfiler GUI communicate with each other
through a socket. As explained in the background article on JProfiler [p. 9] , this situation is
fundamentally the same as running a "local session”, just that the socket communication socket
connects between different machines. The main difference for you is that for local sessions you don't
have to worry about the location of native libraries and that the startup sequence can be managed
by JProfiler.

The remote integration wizard

All integration wizards in JProfiler can help you with setting up remote profiling. After choosing the
integration type or application server, the wizard asks you where the profiled application is located.
If you choose the remote option, there will be additional questions regarding the remote machine.

When the remote integration wizard asks you for startup scripts or other files of the application server
on the remote machine it brings up a standard file selector. If the file system of the remote machine
is accessible as a network drive or mounted into your file system, you can select those files and
JProfiler will directly write modified files to the right location.

If you do not have direct access to the file system of the remote machine, you have two options: You
can use the console integration wizard by executing bi n/j pi nt egr at e on the remote machine.
Alternativly, you can copy the required files to the local machine and use the "remote" option in the
integration wizard. However, you must then transfer the modified or new files back to the remote
machine after the integration wizard has completed.

Requirements for remote profiling

Although the integration wizards in JProfiler give you all required information, it's always a good idea
to have a little more inside knowledge about the mechanics and the requirements of remote profiling.
When trouble-shooting a failed integration, you should check that the requirements below are fulfilled
correctly.

The following requirements have to be satisfied for remote profiling:

1 JPrdfiler has to be installed on the local machine and on the remote machine. If the remote machine
is a Unix machine, you might not be able to run the GUI installer of JProfiler. In this case, please
use the . t ar . gz archive to install JProfiler.

Unless you specified the "nowait" parameter on the command line together with a "config" argument,
(only necessary for pre 1.6 JVMs), you do not have to enter a license key on the remote machine,
the license key is always provided by the JProfiler GUI. Because of that, it is sufficient to unpack
JProfiler to any directory where you have write permission.

2 The operating system and the architecture of the remote machine must be explicitly supported by
JProfiler. Please see the list of supported platforms for more information. JProfiler is not a pure
Java application, it contains a lot of native code which is not easily portable to unsupported platforms.

3 On the remote machine, you have to add a number of VM parameters to the java invocation of
your application server or your standalone application. The fundamental VM parameters are
-Xrunj profiler for Java <=1.4.2 (JVMPI) and -agentpath:[path to jprofilerti
I'i brary] forJava>=1.5.0 (JVMTI), which tell the JVM to load the native profiling agent. The help

-20-

http://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html

page on remote sessions [p. 89] in the reference section tells you the corresponding path to the
jprofilerti library for all platforms.

Depending on your JVM and your platform, you have to add further VM parameters to your java
invocation. The remote session invocation table [p. 93] in the reference section gives you the exact
parameter sequence for your configuration.

This is all that is required to profile a modern JVM (Java 1.5 and later).

For Java <=1.4.2 (JVMPI), more steps are necessary. You also have to add
- Xboot cl asspath/a: {path to agent.jar} which adds required Java classes to the
bootclasspath. agent . j ar is located in the bi n directory of your JProfiler installation. In addition,
the native library path on the remote machine must contain the platform-specific directory in the
bi n directory of the JProfiler installation. The "native library path" is defined by a different
environment variable on each platform. For example, on Windows, it is simply the PATH environment
variable, on Linux it is LD_LI BRARY_PATH. The help page on remote sessions [p. 89] in the
reference section tells you the corresponding environment variables for all platforms.

On the local machine, you have to define a remote session whose "host" entry points to the remote
machine.

Starting remote profiling

If you run the integration wizard for a local application server, JProfiler will be able to start it and
connect to it. JProfiler has no way to start the application server if it is located on a remote machine.
For remote applications and application servers, you have to perform two actions to start the profiling
session:

1

Execute the modified start script on the remote machine. Depending on what option you have
chosen in the remote profiling wizard, there are two startup sequences: either the application or
application server starts up completely, or it prints a few lines of information and tells you that it is
waiting for a connection. With Java 1.6.0 and later, the profiling options will be sent to the profiling
agent when the GUI connects and you don't have to copy your config file to the server.

With Java 1.5.0 and earlier, changing profiling settings at runtime is not possible. In the case where
the application does not wait for a connection from the JProfiler GUI, the profiling agent loads the
profiling configuration from the confi g. xm file you have copied to the server as instructed by
the integration wizard.

Start the remote session in the JProfiler GUI on the local machine. The remote session will connect
to the remote computer and the remote application or application server will then start up if it waited
for the GUI connection.

Trouble-shooting

When things don't work out as expected, please have a look at the terminal output of the profiled
application or application server on the remote machine. For application servers, the stderr stream
might be written to a log file. Depending on the content of the stderr output, the search for the problem
takes different directions:

If stderr contains "Wai ti ng for connection ...",the configuration of the remote machine
is ok. The problem might then be related to the following questions:

« Did you forget to start the remote session in the JProfiler GUI on your local machine?
 Is the host name or the IP address correctly configured in the remote session?
« Isthere a firewall between the local machine or the remote machine?

-21 -

If stderr contains an error message about not being able to bind a socket, the port is already in
use. The problem might then be related to the following questions:

» Did you start JProfiler multiple times on the remote machine? Each profiled application needs
a separate communication port. Please see below on how to change that port.

« Are there any zombie java processes of previous profiling runs that are blocking the port? In
this case please Kkill these processes.

* Is there a different application on the remote machine that is using the JProfiler port? Please
see below on how to change the port for JProfiler.

The communication port is defined as a parameter to the profiling agent VM parameter. To define
a communication port of 25000, please change this VM parameter to
-Xrunj profiler:port=25000 for Java <=1.4.2 (JVMPI) or -agentpath:[path to
jprofilerti library]=port=25000 for Java >=1.5.0 (JVMTI). Also, please make sure that
the same port is configured in the remote session in the JProfiler GUI on your local machine. Please
note that this port has nothing to do with HTTP or other standard port numbers and must not be
the same as any port that's already in use on the remote machine.

For Java 1.4.2 and earlier, if stderr contains an error message about not being able to load native
libraries, the native library path is not configured correctly. Please see the requirements above on
how to configure the native library directory. If the problem persist, it might be a problem with
dependencies. On Unix platforms, you can execute

LD_LI BRARY_PATH=. : $LD_LI BRARY_PATH | dd |i bj profiler.so

in the native library directory to get information about missing dependencies. On Microsoft Windows,
you can download the dependency walker from http://www.dependencywalker.com to analyze the
problem.

Please note that it is not a good idea to define the VM parameter j ava. | i brary. pat h. If you
absolutely have to do that, please make sure that the definition contains the appropriate native
library directory for JProfiler.

For Java 1.4.2 and earlier, if stderr contains a NoCl assDef FoundError for a class in the
com j profil er.agent package, the bootclasspath has not been configured correctly. Please
see the requirements above on how to configure the bootclasspath. Putting agent . j ar in the
regular classpath does not help and may actually be harmful.

NoCl assDef FoundEr r or s also occur if there is a classloader problem. The most common case
is if the profiled application is an OSGi application. In some OSGi applications, you have to add
the JProfiler agent package comjprofiler.agent to the standard variable
org. osgi . f ranmewor k. boot del egat i on in the OSGi configuration file. For eclipse Equinox,
this is the confi g. i ni file, for Apache Felix, this is the confi g. properti es file.

If there are no lines in stderr that are prefixed with JPr of i | er > and your application or application
server starts up normally, the - Xr unj pr of i | er for Java <=1.4.2 (JVMPI) or - agent pat h: [pat h
to jprofilerti Iibrary] forJava>=1.5.0 (JVMTI) VM parameter have not been included
in the java call. Please find out which java call in your startup script is actually executed and add
the VM parameters there.

-22 -

http://www.dependencywalker.com
http://www.osgi.org
http://www.eclipse.org/equinox
http://felix.apache.org

A.1.6 Replacing Finalizers With Phantom References
Why finalizers are bad

Sometimes one must perform pre-garbage collection actions such as freeing resources. In a JDBC
driver, for example, a database connection may be held by a connection object. Before the connection
object is garbage collected, the actual database connection must be closed. In such a case, one
typically cannot rely on the cl ose() method being called by the user application code.

Most often, finalizers are used to solve this problem. A finalizer is created by overriding the
finalize() method of j ava. | ang. Obj ect . In that case, before the object is garbage collected,
this finalize method will be called. Unfortunately, there are severe problems with the design of this
finalizer mechanism. Using finalizers has a negative impact on the performance of the garbage
collector and can break data integrity of your application if you're not very careful since the "finalizer"
is invoked in a random thread, at a random time. If you use a lot of finalizers, the finalizer system may
be completely overwhelmed which can lead to Qut OF Menor yEr r or s. In addition, you have no control
about when a finalizer will be run, so it can create problems with locking, the shutdown of the JVM
and other exceptional circumstances.

The solution is to eliminate finalizers where they are not strictly required and replace the necessary
ones with phantom references.

What are phantom references?

Phantom references can be used to perform actions before an object is garbage collected in a safe
way. In the constructor of a java.lang.ref.PhantonReference, you specify a
j ava. |l ang. ref . Ref erenceQueue where the phantom reference will be enqueued once the
referenced object becomes "phantom reachable". Phantom reachable means unreachable other than
through the phantom reference. The initially confusing thing is that although the phantom reference
continues to hold the referenced object in a private field (unlike soft or weak references), its
get Ref er ence() method always returns nul | . This is so that you cannot make the object strongly
reachable again.

From time to time, you can poll the reference queue and check if there are any new phantom references
whose referenced objects have become phantom reachable. In order to be able to to anything useful,
one can for example derive a class from j ava. | ang. r ef . Phant onRef er ence that references
resources that should be freed before garbage collection. The referenced object is only garbage
collected once the phantom reference becomes unreachable itself.

How to replace finalizers with phantom references

Let's continue with the example of the JDBC driver above: Before a connection object is garbage
collected, the actual database connection must be closed. The following steps are necessary to
achieve this with phantom references:

e Add data structure that holds phantom references

The JDBC driver class gets a data structure that holds phantom references to the connection
objects. A private field

private LinkedLi st phantonReferences = new LinkedLi st ();

would be appropriate. This is necessary to ensure that phantom references are not garbage
collected as long as they have not been handled by the reference queue.

« Create reference queue

Before a connection object will be garbage collected, its phantom reference will be enqueued into
the associated reference queue. The JDBC driver thus gets an additional private field

-23-

private ReferenceQueue queue = new ReferenceQueue();

Derive a class from PhantomReference that references resources

You will not be able to access the original object from a phantom reference. Therefore, you have
to add the resources that must be freed to the phantom reference itself. In our example JDBC
driver this could be a class named Dat abaseConnect i on. The phantom reference class will thus
look like:

public class Connecti onPhant onRef er ence ext ends Phant onRef erence {
privat e Dat abaseConnecti on dat abaseConnecti on;

publ i ¢ MyPhant onRef er ence(Connecti onl npl connecti on, ReferenceQueue queue)
{

super (connecti on, queue);

dat abaseConnecti on = connecti on. get Dat abaseConnecti on();

}

public void cleanup() {

dat abaseConnecti on. cl ose();
}

}

The custom phantom reference extracts the resource object from the implementation class of the
connection and saves it in a private field. It additionally provides a cl eanup() method that can
be invoked once after the phantom reference is taken out of the reference queue.

Create and remember phantom references when objects are created

When a connection object is created, a corresponding Connect i onPhant onRef er ence must
be created as well and added to the phant onRef er ences list:

phant onRef er ences. add(new Connect i onPhant onRef er ence(connecti on, queue));

Create reference queue handler thread

When a phantom reference is added to the queue by the garbage collector, no further action is
taken. You have to handle and empty the reference queue yourself. It's best to create a separate
daemon thread that removes phantom references from the queue and invokes the cleanup method:

Thread referenceThread = new Thread() {
public void run() {

while (true) {

try {

Connecti onPhant onRef erence ref =

(Connect i onPhant onRef er ence) queue. r enove() ;
ref.close();

phant onRef er ences. renove(ref);

} catch (Exception ex) {

/'l 1 og exception, continue

(S S W)

-24 -

ref erenceThr ead. set Daenon(true);
ref erenceThread. start();

The phantom reference is removed from the phant onRef er ences list. Now the phantom reference
is unreferenced itself and the referenced object can be garbage collected.

-25-

A.1.7 Offline Profiling and Triggers
Introduction

There are two fundamentally different ways to profile an application with JProfiler: By default, you
profile with the JProfiler GUI attached. The JProfiler GUI provides you with buttons to start and stop
recording and shows you all profiling data. However, there are situations where you would like to
profile without the JProfiler GUI and analyze the results later on. For this scenario, JProfiler offers
offline profiling. Offline profiling allows you you start the profiled application with the profiling agent
but without the need to connect with a JProfiler GUI.

However, offline profiling still requires some actions to be performed. At least one snapshot has to
be saved, otherwise no profiling data will be available for analysis later on. Also, to see CPU or
allocation data, you have to start recording at some point. Similarly, if you wish to be able to use the
heap walker in the saved snapshot, you have to trigger a heap dump at some point.

Profiling API

The first solutions to this problem is the offline profiling API [p. 225] . With the offline profiling API, you
can programmatically invoke all profiling actions in your code.

The drawback of this approach is that you have to add the JProfiler agent library to the class path of
your application during development, add temporary profiling code to your source code and recompile
your code each time you make a change to the programmatic profiling actions.

Triggers

With triggers [p. 80], you can specify all profiling actions in the JProfiler GUI without modifying your
source code. Triggers are saved in the JProfiler config file. The config file and the session id are
passed to the profiling agent on the command line when you start with offline profiling enabled, so
the profiling agent can read those trigger definitions.

a Triggers | Qutput

o Triggers defined for the current session:
Application

Settings 5] Method invocation @
ad S java,awt Eventoueue, postEventPrivatefjava, awt AWTEvent)
w‘(¢ Timer .
Sz‘tti:rgs Interval 10 minute: et 10 minutes, 10 times
a CPU load threshold
Qgﬁ @’ 70% CPU load
Profiling Heap usage threshold

Settings = . .
2% B0% of maximum heap size

¥

Triggers
Settings

(5] (Gereazeioss |

In contrast to the profiling API use case where you add calls to your source code, triggers are activated
when a certain event occurs in the JVM. For example, if you would have added a call to a certain
profiling action at the beginning or at the end of a method when using the profiling API, you can use

-26-

a method invocation trigger instead. Instead of creating your own timer thread to periodically save a
snapshot, you can use a timer trigger.

Each trigger has a list of actions that are performed when the associated event occurs. Some of these
actions correspond to profiling actions in the offline profiling API. In addition there are other actions
that go beyond the controller functions such as the actions to print method calls with parameters and
return values or the action to invoke an interceptor for a method.

- 27 -

A.2 Memory Profiling

A.2.1 Recording Objects
Introduction

By default, JProfiler does not track the creation of all objects. This reduces the runtime overhead of
the profiling agent regarding execution speed as well as memory consumption.

However, allocation recording is not only a way to increase runtime performance, it also helps you to
focus on important parts of your application and to reduce clutter in the memory views. Imagine you
have a web application that's started in the framework of an application server. The server allocates
a huge number of objects in a great number of classes. If you want to focus on the objects created
by your web application, the objects from the server startup will be in the way. In JProfiler, you can
start allocation recording before you perform a certain action and so reduce the displayed objects to
those that are allocated as a direct consequence of that action.

Starting and stopping allocation recording

The profiler menu as well as the toolbar allow you to start and stop allocation recording. If no allocations
have ever been recorded, the dynamic memory views show placeholders with the corresponding
"record" button. If you wish to enable allocation recording for the entire application run, you can do
so in the profiling settings dialog

When you stop allocation recording, the garbage collection of the recorded objects will still be tracked
by the dynamic memory views. In this way you can observe if the objects created during a certain
period of time are actually garbage collected at some point. Please note that the manual garbage
collection button in JProfiler just invokes the Syst em gc() method. This leads to a full GC in 1.3
JREs where the garbage collector makes the best effort to remove all unreferenced objects. However,
1.4 and 1.5 JREs perform incremental garbage collection, so full garbage collection is not available
when working with such a recent JRE. To check if the remaining objects are really referenced, or if
the garbage collector just doesn't feel like collecting them yet, you can take a heap snapshot. The
heap walker offers the option "Remove unreferenced and weakly referenced objects” which is the
equivalent of a full GC.

JProfiler also keeps statistics on garbage collected objects. All dynamic memory views have a mode
selector where you can choose whether to display only live objects on the heap, only garbage collected
objects, or both of them.

When you have stopped allocation recording and you restart it, the previous contents of the dynamic
memory views will be deleted. In this way, allocation recording gives you the ability to do differencing
of the heap between two points in time.

If you have very specific requirements as to where allocation recording should start and stop, you
can use the offline profiling API [p. 229] to control allocation recording programmatically.

Implications of unrecorded objects

For "unrecorded" objects there are the following implications:

» JProfiler does not know the allocation spot for an unrecorded object. This becomes apparent in
the heap walker. The heap walker takes a heap snapshot and is able to show all objects on the
heap, however, the allocation information is not available from the JVMPI/JJVMTI and the
"Allocations" view will contain top-level method nodes that are labeled as "Unrecorded objects".

» JProfiler does not know the class name for an unrecorded object. This influences the monitor views
and locking graphs where JProfiler is only able to display the name of a monitor object if the object
has been recorded.

The object graph in the VM telemetry views is not affected by allocation recording.

-28-

Allocation recording and the heap walker

In the heap walker options dialog that is displayed before a heap snapshot is taken, the first option
is labeled "Select recorded objects". This allows you to work with a set of objects that has been created
during a certain period of time. This is just an initial selection step and does not mean that the heap
walker will discard all unrecorded objects. In the reference view you can still reach all referenced and
referencing objects and create a new object set with unrecorded objects.

If you use the "take heap snapshot with selection" action in the dynamic memory views, the number
of selected objects will only match approximately, if "Select recorded objects" is checked and "Remove
unreferenced and weakly referenced objects” is not checked in the heap walker options dialog. The
numbers might still not match exactly since the dynamic memory views can change in time while a
heap snapshot is fixed.

-29-

A.2.2 Using the Difference Column in the Memory Views
Introduction

In contrast to allocation recording [p. 28] , where you can restrict the displayed objects to a certain
period of time, a common situation is that you want to retain all recorded objects but still see the
difference of object allocations with respect to a certain point in time. In particular, you might be
interested in which classes have a decreasing allocation count, something that would not be possible
with allocation recording.

Memory views with differencing

By default the difference column is not displayed. Only when you choose View->Mark current values
or the corresponding toolbar button, the difference column is shown as the last column. The following
views in JProfiler have an optional difference column:

« all objects view and recorded objects view

In the all objects view and the recorded objects view, the difference column displays the number
of currently allocated objects of a class minus the number at the point when the values were marked.

» allocations hotspot view

In the allocations hotspot view, the difference column is similar to the recorded objects view, just
that the number of allocations in a method are measured. If you select a class for the hotspots
view with the "Change selection” button, the number of allocations is additionally for a single
package or class only.

In most cases you'll be interested in sorting the view by the values in the difference column. There
are two sort modes that can be adjusted in the view settings dialog:

« absolute ordering

With absolute ordering, the absolute value of the difference will be used for sorting. This is
appropriate if you're interested in the biggest changes.

« normal ordering

With normal ordering, you'll have positive differences at the top, then a usually long list of zero
differences and finally the negative differences. This is the right setting if you're looking for a memory
leak and are only interested in positive differences.

Differencing and the heap walker

The difference column only shows a calculation, there's no fixed set of objects behind this number.
Because of that, it is not possible to select the "difference objects" and work with them in the heap
walker. To select objects based on their time of creation, please see the article on allocation recording

[p. 28] .
The class tracker

The class tracker view provides a way to capture the history of instance counts over time for selected
classes or packages in the form or a graph. However, you have to select the tracked classes or
packaged in advance, so the class tracker is best used on classes or packages that appear suspicious
from the differencing in the all objects or recorded objects views.

-30 -

A.2.3 Finding a Memory Leak
Introduction

Unlike C/C++, Java has a garbage collector that eventually frees all unreferenced instances. This
means that there are no classic memory leaks in Java where you forget to delete an object or a
memory region. However, in Java you can forget something else: to remove all references to an
instance so that the object can be garbage collected. If an object is only ever held in a single location,
this may seem simple, but in many complex systems objects are passed around through many layers,
each of which can add a permanent reference to the object.

Sometimes it appears to be clear that an object should be garbage collected when looking at the local
environment of where the object is created and discarded. However, any call to a different part of a
system that passes the object as a parameter can cause the object to "escape” if the receiver
intentionally or by mistake continues to hold a reference to the object after the call has completed.
Often, over-eager caching with the intention to improve performance or design mistakes where parallel
access structures are built are the reason for memory leaks.

Recognizing a memory leak

The first step when suspecting a memory leak is to look at the heap and object telemetry views. When
you have a memory leak in your application, these graphs must show a linear positive trend with
possible oscillations on top.

If there's no such linear trend, your application probably simply consumes a lot of memory. This is
not a memory leak and the strategy for that case is straightforward: Find out which classes or arrays
use a lot of memory and try to reduce their size or number or instances.

Using differencing to narrow down a memory leak

The first stop when looking for the origin of a memory leak is the differencing action [p. 30] of the all
objects view and the recorded objects view. Simple memory leaks can sometimes be tracked down
with the differencing function alone.

First, you observe the differences in the all objects view or the recorded objects view and find out
which class is causing the problems. Then you switch to the allocation hotspots view, select the
problematic class and observe in the difference column in which method the problematic instances
are allocated. Now you know the method in which these instances were created.

An analysis of the code for this method and the methods to which these instances are passed may
already yield the solution to the memory leak. If not, you have to continue with the heap walker.

Another tool to observe instance counts that also presents a history of values is the class tracker.
The class tracker shows graphs of instance counts versus time for selected classes and packages.
When the difference columns in the "all objects"” or "recorded objects" views identify suspicious classes,
the class tracker can often generate further insight into the evolution of these instance counts since
you can correlate jumps or increases in the allocation rate with other telemetry views or bookmarks.

The heap walker and memory leaks

When you take a heap snapshot, you first have to create an object set with those object instances or
arrays that should be freed by the garbage collector but are still referenced somewhere. If you've
already narrowed down the origin of the memory leak in the dynamic memory views, you can use the
"Take heap snapshot for selection” action to save you some work and to start in the heap walker right
at the point where you left off in the dynamic memory views.

By default, the heap walker cleans a heap snapshot from objects that are unreferenced but are still
not collected by the garbage collector. This behavior can be controlled by the "Remove unreferenced
and weakly referenced objects” option in the heap walker options dialog. When searching for a memory
leak, this "full garbage collection" is desirable, since unreferenced objects are a temporary phenomenon
without any connection to a memory leak.

-31-

If necessary, you can now further narrow down the memory leak by adding additional selection steps.
For example, you can go to the data view and look at the instance data to find out a number of
instances that definitely should have been freed. By flagging these instances and creating a new set
of objects you can reduce the number of objects that are in your focus.

Using the biggest objects view to find the reason for a memory leak

Many memory leaks can be traced to object clusters that should be freed but are erroneously held
alive through a single string reference. This will lead to a number of objects that have a very large
retained size. "Retained size" is the memory that would be freed by the garbage collector if an object
were to be removed from the heap. The biggest objects view lists the objects with the biggest retained
sizes together with the tree of retained objects. You can use that tree to drill down to find the erroneous
references.

Using the reference graph to find the reason for a memory leak

The core instrument for finding memory leaks is the reference graph in the heap walker. Here you
can find out how single objects are referenced and why they're not garbage collected. By successively
opening incoming references you may spot a "wrong" reference immediately. In complex systems
this is often not possible. In that case you have to find one or multiple "garbage collector roots".
Garbage collector roots are points in the JVM that are not subject to garbage collection. These roots
emanate strong references, any object that is linked by a chain of references to such a root cannot
be garbage collected.

When you right-click on an object in the reference view, the context menu offers the option to search
for paths to the garbage collector roots:

= java.utiljar Attributes
Shallow Size: 16 bytes
Show incoming references

&
= Show outgoing references

| Tl Show paths to GC goot

Use selected objects

£ show source
+, Zoom in
=, Zoom out
[Z] Fit Content
. Zoom to 100%
Hierarchic layout
) Organic layout
@ Orthogonal layout
[0 Show Object IDs
Reset graph
15, Export view

ﬁ ¥iew settings

Potentially there are very many garbage collector roots and displaying them all can lead to the situation
that a sizable fraction of the entire heap has to be shown in the reference graph. Also, looking for
garbage collector roots is computationally quite expensive, and if thousands of roots can be found,
the computation can take very long and use a lot of memory. In order to prevent this, it is recommend
to start with a single garbage collector root and search for more roots if required. An option dialog is
displayed after you trigger the search:

-32-

& Path to root options @

Select options for the path to roat analysis;

Calculating a single path to a garbage collector root is fasker
and often sufficient for memory leak detection.

@ Single root

) Upta roots
) &l roots

| Ok, ” Cancel J | @ Help

As you can see in this example, the chain to a garbage collector root can be quite long:

static field urlCache B
of sun.netwww.protocaol jarJarFileFactory =

J

L
java.util HashMap

BT

1

B
< 5|
class=[]

I

. L=
java.util. HashMapSEntry

\—+

sun.netwww.protocol jar URLJarFile

& B

%

E

-

=class=[]

’ L3
java.util HashMap

& =

—t

java.utilHashMap$Entry

& LY

\—4'

= JavautiljarAtributes o
Shallow Size: 16 bytes
Deep Size: 240 hytes

\—vk

&

L]
java.util HashMap

The reason for a memory leak can be anywhere along this chain. It is of a semantic nature and cannot
be found out by JProfiler, but only by the programmer. Once you have found the faulty reference, you
can work on your code to remove it. Unless there are other references, the memory leak will be gone.

Using the cumulated references views to find the reason for a memory leak

In some cases, you might not succeed in narrowing down the object set to a reasonable size. You
object set might still contain a large number of instances that are OK and using the reference graph
might not provide any insight in this situation.

-33-

If such a situation arises, the cumulated reference tables available in the reference view of the heap
walker can be of help. The cumulated incoming reference table shows all possible reference types
into the current object set:

Current object set: 231 instances of java.util.jar Attributes >
2 selection steps, 4 kB shallow size, calculate deep size ;)lj\j
-’>

|kumulated incoming references " - "

Reference bype | Reference count 4 I Size
Field walue of java.util HashMap$Entry | s foicived
field attr of java.util.jar.Manifest | 128
field superAttr of sun.net.www,protocol jar, URLJarFile | 1 56

From the reference type, you may be able to narrow down the object set. For example, you may know
that one type of reference is OK, but another is not. As a hypothetical example, the reference from
HashMap$Ent r y in the table above might be OK, but the reference fromj ava. uti | . j ar. Mani f est
might be suspicious. By selecting the 8 objects who are referenced in this way, you can discard the
other 224 instances and use the reference graph to show the path to a garbage collector root.

-34-

A.3 CPU Profiling

A.3.1 Time Measurements in Different CPU Views
Wall clock time and CPU time

When the duration of a method call is measured, there are two different possibilities to measure it:

* Most likely you'll be interested in the wall clock time, that is the duration between the entry and
the exit of a method as measured with a clock. For the profiling agent this is a straightforward
measurement. While it might seem at first glance that measuring times should not have any
significant overhead, this is not so if you need a high resolution measurement. Operating systems
offer different timers with different performance overheads.

For example, on Microsoft Windows, the standard timer with a granularity of 10 milliseconds is
very fast, because the operating system "caches" the current time. However, the duration of method
calls can be as low as a few nanoseconds, so a high resolution timer is needed. A high resolution
timer works directly with a special hardware device and carries a noticeable performance overhead.
In JProfiler, CPU recording is disabled by default, however, method call recording is always enabled.
If you compare the duration of the startup sequence of an application server with and without CPU
recording, you will notice the difference.

Wall clock time is measured separately for each thread. In CPU views where the thread selection
includes multiple threads, the displayed times can be larger than the total execution time of the
application. If you have 10 parallel threads of the same class MyThr eadCl ass whose r un()
method take 1 second and "All threads" is selected in the call tree, the MyThr eadd ass. r un()
node in the call tree will display 10 seconds, even though only one second has passed.

« Since the CPU might be handling many threads with different priorities, the wall clock time is not
the time the CPU has actually spent in that method. The scheduler of the operating system can
interrupt the execution of a method multiple times and perform other tasks. The real time that was
spent in the method by the CPU is called the CPU time. In extreme cases, the CPU time and the
wall clock time can differ by a large factor, especially if the executing thread has a low priority.

The standard time measurement in JProfiler is wall clock time. If you wish to see the CPU time in
the CPU views, you can change the measurement type in the profiling settings. The problem with
CPU time measurement is that most operating systems provide this information with the granularity
of the standard timer - high resolution measurements would carry to much overhead. This means
the CPU times are only statistically valid for method that have a CPU time bigger that the typical
granularity of 10 milliseconds.

Thread statuses

The notion of time measurement must be refined further, since not all times are equally interesting.
Imagine a server application with a pool of threads that waiting to perform a task. Most of the time
would then be in the method that keeps the threads waiting while the actual task will only get a small
part of the overall time and will be hard to spot. The necessary refinement is done with the concept
of thread status. There are 4 different thread statuses in JProfiler:

« Runnable

In this case the thread is ready to execute code. The reason that this is not called "Running" is that
it may actually not be running due to the scheduler of the operating system. However, if given a
chance, the thread will execute instructions.

e Waiting

This means that the thread has deliberately decided to enter into hibernation until a certain event
occurs. This happens when you call Obj ect . wai t () and the current thread will only become
runnable again when some other thread calls Obj ect . noti f y() on the same object.

-35-

« Blocking

Whenever synchronized blocks of code or synchronized methods occur, there can be monitor
contention. If one thread is in the synchronized area all other threads trying to enter it will be
blocked. Frequent blocking can reduce the liveness of your application.

* Net I/O

During network operations, many calls in the Java standard libraries can block because they're
waiting for more data. This kind of blocking is called "Net I/O" in JProfiler. JProfiler knows the list
of methods in the JRE that lead to blocked net I/O and instruments them at load time.

When looking for performance bottlenecks, you're mostly interested in the "Runnable" thread state
although it's always a good idea to have a look at the "Net /0" and "Blocking" thread states in order
to check if the network or synchronization issues are reducing the performance of your application.

Times in the call tree

Nodes in the call tree (methods, classes, packages or Java EE components, depending on the selected
aggregation level) are sorted by total time. This is the sum of all execution times of this node on the
particular call path as given by the ancestor nodes. Only threads in the current thread selection are
considered and only measurements with the currently selected thread status are shown.

Optionally, the call tree offers the possibility to show the inherent time of a node. The inherent time
is defined as the total time of of a method minus the time of its child nodes. Since child nodes can
only be in unfiltered classes, calls into filtered classes go into the inherent time. If you change your
method call recording filters [p. 15], the inherent times in the call tree can change.

Times in the hotspots view

While the call tree view shows all call stacks in your application, the hotspot view shows the methods
that take most of the time. Each method can potentially be called through many different call stacks,
so the invocation counts in the call tree and the hotspots view do not have to match. The hotspot view
shows the inherent time rather than the total time. In addition, the hotspot view offers the option to
include calls to filtered classes into the inherent time. Please see the article on hotspots and filters
[p. 37] for a thorough discussion of this topic.

When you open a hotspot node, you see a reverse call tree. However, the times that are displayed
in those backtraces do not have the same meaning as those in the call tree, since they do not express
a time measurement for the corresponding node. Rather, the time displayed at each node indicates
how much time that particular call tree contributes to the hot spot. If there is only one backtrace, you
will see the hotspot time at each node.

Times in the call graph

The times that are shown for nodes (methods, classes, packages or Java EE components, depending
on the selected aggregation level) in the call graph are the same as those in the hotspots view. The
times that are associated with the incoming arrows are the same as those in the first level of the
hot spot backtrace, since they show all calling nodes and the cumulated duration of their calls. The
time on the outgoing arrows is a measurement that cannot be found in the call tree. It shows the
cumulated duration of calls from this node, while the call tree shows the cumulated duration of calls
from the current call stack.

-36 -

A.3.2 The Influence of Method Call Recording Filters on Hotspots
Introduction

The notion of a performance hot spot is not absolute but relative to your point of view. The total
execution time of a method is not the right measure, since in that case your main method or the r un()
method of the AWT event dispatch thread would be the biggest hotspots in most cases. Such a
definition of a hotspot would not be very useful.

At the other extreme one could use the unfiltered inherent time of the execution of a method for the
ranking of hotspots. The unfiltered inherent time is the total time minus the time spent in all other
method calls. This would not be very useful either, since the biggest hotspots will most likely always
be core methods in the JRE, like string manipulation, 1/0 classes or core drawing routines in obscure
implementation classes of the AWT.

As the above considerations make clear, the definition of a hotspot is not trivial and must be carefully
considered.

Definition of a hotspot

Only with filters is it possible to come up with a useful definition of a hotspot. Usually, your method
call recording filters [p. 17] will be set up in such a way that all library classes and framework classes
will be filtered out. In the following discussion, we're going to assume that this is the case.

In order to be useful a hot spot must be

« amethod in your own classes

This can be obtained by measuring hotspots with the inherent time of a method call plus the calls
into filtered classes.

« amethod in alibrary class that you call directly

Since filters are endpoints for the measurement of methods, the inherent time of a filtered method
is equal to its total execution time. When simply measuring hotspots with this filtered inherent time,
filtered classes will likely be the hotspots.

Which one of these viewpoints is more helpful depends on the actual situation. JProfiler's hotspot
view offers both modes with the combo box in the top-right corner. The allocation hotspots views also
offer this mechanism of adjusting the definition of a hotspot.

Example

Let us profile the animated Bezier curve demo that comes with JProfiler. We will try out different filter
settings and check how they influence the list of hotspots. In this case we consider the Bezi er Ani m
class to be "our" code, while the JRE classes are library classes.

We start by using the "Maximum detail" profiling setting template. Here, full instrumentation is used
and no filters are applied.

Thread selection: [All thread groups E‘ Thread status: -RunnahleE Filtered classes: |show separately E
|

| Methad Inherent time 4 | Irwocations |
@= /N java.lang. Thread.sleep I 004 ms (15) 1603
@= /M java.awt. GradientPaintContext.clipFilR aster I 056 s (11 %) 23176
sun, javazd. loops, Bt Blit I - 149 ms (5 %) 3075
sun.de.pr.PathFiler . writealphas I 1197 s (4 %) 45341
sun. javazd, pipe, DuctusShapeRenderer renderPath I 1010 ms (3 %) Z216
sun. javazd. loops. MaskElit. MaskElt W 451 ms {1 %) #1207
@= /M java.lang.Math.min W 436 ms {1 %) 227815
sun.de.pr.PathFiler. setoutputArea W 344 ms (1 %) 2216
sun.javazd. pipe. AlphaPaintPipe renderPathTile W 520 ms {1 %) 23176
sun. javazd. loops. MaskFil. MaskFill W 516 ms {1 %) 24133
@= /M cun.dc.pr.Rasterizer. getTileState W 317 ms {1 %) TEEZ3
@ A\ java.awt. GradientPaintCantext, <init = W 303 ms (1 %) 1109
sun.javazd, pipe, DuctusRenderer. createShapeRasterizer [l 299 ms (1 %) 2216
sun. awt windows, win3ZElitLoops. Blic B 226 ms (0 9:) 1107
@= /M cun.dc.pr.PathFiller . writeAlpha B 210 ms (0 9%) 45341
sun.javazd. pipe. DuctusRenderer. getalpha B 203 ms {0 %) 45341
sun.de.pr.Rasterizer. writedlpha B 167 ms (0 %) 45341
sun. awt. AppContext.get B 166 ms (0 %) 14357

-37-

As we can see, most of the hotspots are implementation classes in sun. * implementation packages.
Theses classes are never called by our code. While we could open the backtraces and see how they
have been invoked, this is cumbersome and produces no insight into any performance problems that
we might be able to solve.

In the next step, we restrict our filters so that only Bezi er Ani mand the j ava. awt . * packages are
unfiltered. This viewpoint is a little strange, somewhat as if the j ava. awt . * belonged to our code,
too. But we want to show how the inclusion of filters changes the hotspots, so we take this middle
step. We do this by customizing the "Maximum detail" profiling setting template and entering
Bezi er Anim java.aw . * as inclusive filters.

Thread selection: AII thread grnups Thread status: | RunnahIeE Filtered classes: shnw saparately

| Method Inherent time 4 | Invocations]
@ /W java.lang.Thread.sleep _ 4149 ms (15 %a) 1620 |~
@ /N java awt.GradientPainkContext, clipFilF.aster | EEEEREEES] 29005 [|
@= /N sun.javazd. Sun@raphicsZD.draw I 005 ms (11 %) 1383
@= /N sun.javazd, SunaraphicszD.drawimage I S ms (11 Gh) 1383
@= /N sun.jawvazd. suniraphicsz0.Fill I -0 ms (10 %) 1383
@= /N javax swing. SystemEventQueueltiitiest ComponentiorkReques. .. [1406 ms (5 %) 1379
@@= /N javax swing.JCompanent.repaint Il 365 ms (3 %) 1320
@= /W java.awt, Toalkit$2.run W 394 ms (1 %) 1
@ /N java awt.GradientPainkContext, <init s B 354 ms (1 %) 1385
@= /N sun.javazd. Sun@raphicsZD.clearRect B 300 ms {1 %) 1383
@= /M java utl.ResourceBundle. getBundle B E71ms {190 1
@= /M javax swing. Japplet, <iniks 0 245 ms {0 %) 1
@= /N java awt, GradientPainkContext, getRaster B 226 ms (0 %) 29003
@= /W java.lang.Class.newlnstance 1 158 ms {0 %) 2
@@= /W java.awt.Rectangle. <init= 1 156 ms {0 %) 22356
@= /N sun,awt.windows, W ComponentPeer . getGraphics 1 160 ms {0) 1354
@= /N sun, awtwindows, W Toolkit.createFrame 1159 ms {0 %) 1
@= /M java utl.HashMap. put 1 140 ms {0 %) 6968

Again, there are a lot of filtered classes in the list of hotspot, but while the first two hotspots have
stayed the same, the list below them is completely different to the unfiltered case.

Since we now have filters, we can change the viewpoint further by choosing the "add times to calling
class" option in the top-right combo box labeled "Filtered classes".

Thread selection: |all thread groups E‘ Thread status: (e RunnahIeE Filtered classes: [ladd times to calling class E

Method | Inherent time 4 | Invocations |
@= /1 Beziersnim$Demo.drawDemo I i ms (EE) 1353 | =
@= /N BezieranimsDemo. run I 55 s (16 %) 17
@= /M java,awk, GradientPainkConkext . clipFilR aster I G050 s (15 %) 29003
@~ A\ Bezieranim$Demo. paint I =005 rns (11 %) 1383
@= /M java.awt.event. InvocationEvent. dispatch Il 1417 ms {5 %) 1406
@= /M java.awt. Component . repaint W 503 ms (3 9%) 1821
@= /M Bezierfnim$Demo, createGraphicsZD W 553 ms (2) 1383
@ java.awt, Component . getGraphics B 430 ms {1 %) 6900
o8 java.awt, ToolkitEz .run B 396 ms (1 %) 1
[og jawva.awt, GradientPaintContext. <init > B 354 ms (1 %) 1385
o= jawva.awk, GradientPaintConkext.getRaster B 281 ms il %) 29003
@ java.awk, Toalkith3.run 1273 ms {1 %) 1
(o8 BezierAnirn. <init = 1 248 ms {0 %) 1
[og java.awt. RenderingHints. put 1 208 ms (0 %) 6925
o= jawa.awk, GraphicsEnvironment. getLocalGraphicsEnvironment 1 191 ms (0 %) 15
@ java.awk.Rectangle. <init> | 186 ms {0 %) 22356
(o8 BezierAnim$DemoContrals, <init = | 186 ms (0 %) 1
[og jawva.awt,Frame, addrotify | 161 ms (0 %) 1

Now, the list has changed completely and we only see unfiltered classes.

Finally, we profile with the "All features enables, high CPU profiling detail" option, where all classes
in the JRE are filtered.

Thread selection: M Thread status: w Filtered classes: w
| Method Inherent time 4 | Invocations
@ /M java.awt. Graphics2D,Fil _ F213 ms (34 Ya) 1754
@= /M java.lang. Thread.sleep I S:55 ms (24) 1794
@= /M java.awk. Graphics. drawlmage I Z459 s (16 %) 1783
@@= /M java,awk, GraphicsZD, draw I 2209 ms (10 %) 1754
@ /M java.awt.EventDispatchThread.run W 1064 ms (5 %) 1
@= /T java.awt. Component.repaint B 460 ms (2 %) 1794
@= /M java.awk, Graphics.clearRect | 270ms {1 %) 1754
@@= My javax,swing. JApplet, <init> | 236 ms {1 %) 1
@ A javax.swing.JMenuBar.add | 213 ms {1 %) 2
@= AT java.awt, Window, pack | 114 ms (0 %) 1
@= /M Berieranim$Demo. drawDema 55 ms (0 %) 1784
@@= /M java,awtimage,BufferedImage. createGraphics 46 ms (0 %) 1754
@ /N java.awt. Graphics2D, setRenderingHint 46 ms (0 %) 1784
@= /1 Bezieranim$Demo, paint 28 ms (0 %) 1754
[og BezierAnim$Demo. step 26 ms (0 %) 1784
(o8 BezierAnim$Demo, animate 24 ms (0 %) 21408
@ BezierAnim$Dema createGraphics2Dy 23 ms (0 %) 1784
[og java.awt, geom GeneralPath. <init= 22 ms (0 %) 1754

-38 -

Any of the methods that appear in the list of hotspots have been called from our code. This is great
for finding performance bottlenecks but sometimes we only want to see our own methods. Again we
choose the "add times to calling class" option in the top-right combo box labeled "Filtered classes".

Thread selection: [All thread groups Thread status: |mm Runnablea Filtered classes: |ladd times to calling class E

] Method] Inherent time £ | Invocations
@= /M Bezieranim$Demo. drawDema I -0 s (45 Y) 1784
@= /M Bezierfnim$Demo, run I 5720 ms (27) 1
@ A\ Bezieranim$Demo. paint I 5512 ms (16 %) 1784
@= /M java.awt.EventDispatchThread.run W 1064 ms (5 %) 1
@= /M Bezieranim$Demo. createGraphicszh I 414 ms (1 %) 1754
@= /M Beziernim$DemoCaontrols, <init > | 286 ms (1 %) 1
@~ A\ Bezieranim, <init = | 237 ms {1 %) 1
@= /T BezierAnim.main | 135 ms (0 9&) 1
@= /M Bezieranim$Demo. step 26 ms (0 %) 1754
@= /M BezierAnim$Demo, animate 26 ms [0%) 21408
@~ A\ Bezieranim$DemoControls, <clinit> 14 s (0 %) 1
@= /T BezierAnim.init 15 ms (0 %) 1

All but one method are directly from the BezierAnim class. The
java. awt . Event Di spat chThr ead. run() method is an upward filter bag. It contains framework

calls that are executed before any method in our own code is called. This is why it cannot be included
into any of our methods.

From the above example you can see how important the filter sets and the definition of a hotspot are

for the actual results in the hotspot view. The same considerations apply to the allocation hotspot
view.

-390 -

B Reference

B.1 Getting Started

B.1.1 Quickstart Dialog

By default, the quickstart dialog is shown when JProfiler is started. It contains a number of shortcuts
that help to to get started with profiling your application. The manual configuration dialog as well as
all integration wizards are also available on the "New session" tab of the start center [p. 41] . Once
you're familiar with JProfiler you can turn off the quickstart dialog by deselecting the check box show
qui ckstart at startup atthe bottom.

You can access the quickstart dialog at at any later time by pressing SHI FT- F1 or by choosing
Help->Show quickstart dialog from JProfiler's main menu.

B.1.2 Running the Demo Sessions
For a quick tour of JProfiler's features, please run the demo sessions:

Start up JProfiler and wait for the start center [p. 41] to appear.

Choose one of the demo sessions from the list of available sessions.

Click [OK].

The profiling settings dialog appears. To accept the default settings, just click [OK].

o1 A W N P

A terminal window is opened for the demo process and the main window of JProfiler starts displaying
profiling information [p. 107].

The Java source code for the demo sessions can be found in "{JProfiler install
directory}/deno/">

B.1.3 Overview of Features

JProfiler's features are ordered into view sections. A view section can be made visible by selecting
in JProfiler's sidebar. JProfiler offers the following view sections:

* Memory profiling [p. 118]

Keep track of your objects and find out where the problem spots are.
e The heap walker [p. 137]
Use the drill down capabilities of JProfiler's unique heap walker to find memory leaks.

e CPU profiling [p. 170]
Find out where your CPU time is going and zero in on performance bottlenecks.

e Thread profiling [p. 192]
Check the activity of your threads, resolve deadlocks and get detailed information on your
application's monitor usage.

¢ VM telemetry information [p. 207]
Unfold the statistical history of your application with JProfiler's virtual machine telemetry monitors.

In order to help you find JProfiler's features which are most important to you, we present a situational
overview. There are two types of uses for a profiler which arise from different motivations:

* Problem solving

-40 -

If you turn to a profiler with a problem in your application, it most likely falls into one of the following
three categories:

« Performance problem

To find performance related problem spots in your application, turn to JProfiler's CPU section
[p. 170] . Often, performance problems are caused by excessive creation of temporary objects.
For that case, the recorded objects views [p. 121] with its view mode set to "garbage collected
objects" will show you where efforts to reduce allocations make sense.

« Excessive memory consumption

If your application consumes too much memory, the memory views [p. 118] will show you where
the memory consumption comes from. With the reference views [p. 148] in the heap walker [p.
137] you can find out which objects are unnecessarily kept alive in the heap.

 Memory leak

If your application's memory consumption goes up linearly with time, you likely have a memory
leak which is show stopper especially for application servers. The "mark current values and
show differences" feature in the memory section [p. 118] and the heap walker [p. 137] will help
you to find the cause.

+ Deadlock

If you experience a deadlock, JProfiler's current monitor graph [p. 201] will help you to find the
cause even for complex locking situations.

e Hard to find bug

A often overlooked but highly profitable use of a profiler is that of debugging. Many kinds of
bugs are exceptionally hard to find by hand or by using a traditional debugger. Some bugs
revolve around complex call stack scenarios (have a look at the CPU section [p. 170]), others
around entangled object reference graphs (have a look at the heap walker section [p. 137]), both
of which are not easy to keep track of.

Particularly JProfiler's thread views [p. 192] are of great help in multi-threaded situations, where
race-conditions and deadlocks are hard to track down.

e Quality assurance

During a development process, it's a good idea to regularly run a profiler on your application to
assess potential problem spots. Even though an application may prove to be "good enough" in
test cases, an awareness for performance and memory bottlenecks enables you adapt your design
decisions as the project evolves. In this way you avoid costly re-engineering when real-world needs
are not met. Use the information presented in JProfiler's telemetry section [p. 207] to keep an eye
on the evolution of your application. The ability to save profiling snapshots [p. 101] enables you to
keep track of your project's evolution. The offline profiling [p. 225] capability allows you to perform
automated profiling runs on your application.

B.1.4 JProfiler's Start Center

When JProfiler is started, the start center window appears. The start center is composed of three
tabs:

e Open session

All sessions configured by you or the preconfigured demo sessions can be started by double
clicking on a session or by selecting a session and clicking [OK] at the bottom of the start center.
In addition, sessions can be edited [p. 64], copied or deleted by using the buttons on the right hand
side of the dialog or by invoking the context menu.

- 41 -

New session
Sessions can be created in one of two ways:

e By manual configuration

Use the [New session] button to manually configure [p. 65] a new session. After you finish
configuring your session, it will be started.

e Through an integration wizard

Use the [New server integration] button to invoke the integration wizard [p. 42] selector. The
[New remote integration] and [New applet integration] buttons are convenience shortcuts.
After you finish configuring your session, you can either start the session immediately or the
"open session" tab will be displayed with the new session selected.

Convert session

Here, you can convert existing local sessions to remote sessions or offline profiling sessions [p.
225] or prepare a local session for redistribution to other computers. The latter will also collect all
files for the agent that are necessary to get the agent running on remote machines. The existing
local session that is chosen for conversion will not be modified.

Open snapshot

Previously saved sessions [p. 101] can be opened from this tab by selecting the desired *. j ps file
and clicking [OK] at the bottom of the start center.

Note: For technical reasons, the open snapshot tab is not displayed on Mac OS X. Please use
Session->Open snapshot from JProfiler's main menu instead.

When you choose not to open a profiling session for an empty window and exit the start center by
clicking the [Cancel] button, all of JProfiler's views are disabled and only the general settings
(Session->General settings) and the Session and Help menus are enabled.

The start center can be invoked at any later time

by choosing Session->Start center or clicking on the corresponding ki toolbar button.

If a session is currently active upon opening a session, it will be stopped after a confirmation dialog
and the new session will replace all profiling data of the old session.

by choosing Session->Start center in new window. A new main window of JProfiler will be opened,
other active sessions will not be affected.

B.1.5 Application Server Integration

JProfiler's application server integration wizard makes profiling application servers especially easy.
It can be invoked in one of two ways:

from the start center [p. 41] on the "new session" tab.
by selecting Session->New server integration from JProfiler's main menu.

During the first step of the wizard you are asked to specify the product which is to be integrated. The
second step asks you whether the profiled application or application server is running on the local
computer or on a remote machine. In the third step you choose the desired startup mode which is
one of "Wait for connection”, "Startup immediately" and "Offline profiling". The "Wait for connection”
is recommended at first. Only choose the other modes later on once you are familiar with JProfiler.

The subsequent steps depend on this choice. Please follow the instructions presented by the wizard.

- 42 -

If you miss support for a particular product, please don't hesitate to contact us through the support
request form

If no GUI is available on the remote machine you can use the j pi nt egr at e executable in the bi n
directory for the console integration wizard.

The console integration wizard will create a config file that can be imported [p. 103] in a JProfiler GUI
installation to connect zo the profiled application server without any further configuration.

B.1.6 IDE Integration

JProfiler integrates seamlessly into several popular IDEs [p. 46] . To bring up the integration dialog,
please select Session->IDE integrations from JProfiler's main menu.

Select the desired IDE from the drop down list and click on [Integrate]. After completing the instructions,
you can invoke JProfiler from the integrated IDE without having to specify class path, main class,
working directory, used JVM and other options again. Also, source code navigation will be performed
in the IDE where possible.

See here [p. 46] for specific explanations regarding each IDE integration.

-43-

http://www.ej-technologies.com/redir.php?target=support
http://www.ej-technologies.com/redir.php?target=support

B.2 JProfiler setup

B.2.1 JProfiler Setup Wizard

If you run JProfiler for the first time, a setup wizard will guide you through the steps to collect all
required information in order to create and run profiling sessions. Everything you enter here can be
changed at a later time through the menus of a running instance of JProfiler. The setup wizard inquires
about:

« Importing settings from an older version of JProfiler

If you would like to import your settings, please select the config file of your old JProfiler installation.
The name of the config file is conf i g. xm . This file is located in

e {JProfiler installations directory}/confi g forJProfiler<=2.1.1
« {User home directory}/.jprofil er2forJProfiler >=2.2
« {User home directory}/.jprofil er3 forJProfiler >= 3.0
« {User home directory}/.jprofil er4 forJProfiler >= 4.0
« {User home directory}/.jprofiler5 for JProfiler >=5.0
e« {User home directory}/.jprofil er6 for JProfiler >= 5.0

Note: If a JProfiler >= 2.2 installation is detected, it is imported automatically.
This step can be used to migrate a JProfiler configuration to a different computer.
* License information

You are required to enter your key and your personal information [p. 44] before proceeding to the
next step.

Note: If a JProfiler >= 4.0 installation is detected, this step is omitted.
e Java virtual machines installed on your system

JProfiler will search your local fixed drives for installed JVMs. You may stop the search at any time
and edit found JVMs or add new JVMs manually in the following screen. The "Check found JVMs"
step of the wizard works like the "Java VMs" tab [p. 104] in JProfiler's general settings [p. 104] where
JVMs may be changed later on.

Note: If a JProfiler >= 2.2 installation is detected, this step is omitted.
« IDE integration

JProfiler can be fully integrated into most popular IDEs [p. 46] . By selecting the desired integration
and clicking [Integrate] button you start the integration process. You can also perform the
integrations later by choosing Session->IDE integrations from the main menu.

B.2.2 JProfiler Licensing

Without a valid license, JProfiler cannot be started. If you don't have a key, visit www.jprofiler.com;
to get an evaluation key or to buy a license. If you have already obtained an evaluation key and were
not able to evaluate JProfiler, please write to sales@ej-technologies.com to request a new key.
JProfiler 5 does not work with license keys for lower versions. Please upgrade your license on our
website.

You can enter your license key in one of two ways:

* In JProfiler's setup wizard [p. 44]
e Through JProfiler's main menu: Help->Enter license key

- 44 -

http://www.jprofiler.com
http://www.ej-technologies.com/redir.php?target=sales&type=sales

Together with your license key, you are asked for your name and - if applicable - for the name of your
company.

Please read the included file | i cense. ht m to learn about the scope of the license.

To make it easier for you to enter the license key, you can use the [Paste from clipboard] button,
after copying any text fragment which contains the license key to your system clipboard. If a valid
license key can be found in the clipboard content, it is extracted and displayed in the dialog.

-45 -

B.3 IDE integrations

B.3.1 JProfiler IDE Integrations

JProfiler can be integrated into the IDEs listed here [p. 46] . Installation is done either

e Automatically (recommended)

Select Session->IDE integrations from JProfiler's main menu or go to the IDE integrations tab [p.
105] in the general settings dialog [p. 104] . Now select the desired IDE from the drop down list, click
on [Integrate] and follow the instructions [p. 105] .

e Manually

The directory i nt egr at i ons in the JProfiler install directory holds a humber of archives which
can be used for manually integrating JProfiler with any of the supported IDEs. See the file
README. t xt in the above directory for detailed instructions.

After completing the instructions, you can invoke JProfiler from the integrated IDE without having to
specify class path, main class, working directory, used JVM and other options again.

Allintegrations insert toolbar buttons and menu entries into the respective IDE that run the application
in the IDE with profiling enabled. On Windows and Mac OS X, the IDE reuses an already running
instance of JProfiler to present profiling data. If JProfiler is not running, it will be started automatically.

Navigation to source code from JProfiler will be performed in the IDE, i.e. if you choose the "Show
source" action for a class or a method, it will be displayed in the IDE and not in JProfiler's integrated
source code viewer.

B.3.2 JProfiler as an IntelliJ IDEA Plugin

With JProfiler integrated into JetBrain's IntelliJ IDEA, JProfiler can be invoked from within the IDE
without any further need for session configuration.

Requirements: IDEA 4.x, 5.%, 6.X, 7.X., 8.x or 9.x
The installation of the IntelliJ IDEA plugin is started by selecting "IntelliJ IDEA 4.x/5.x" on the

« |IDE integration tab of JProfiler's setup wizard [p. 44]

» miscellaneous options tab [p. 105] of JProfiler's general settings [p. 104] (use Session->IDE integrations
in JProfiler's main menu as a shortcut).

and clicking on [Integrate]

Reminder: Please close IntelliJ IDEA while performing the plugin installation. If you are performing
the installation from JProfiler's setup wizard [p. 44] , please complete the entire setup first before
starting IntelliJ IDEA.

A file selector will then prompt you to locate the installation directory of IntelliJ IDEA.

After acknowledging the completion message, you can start IntelliJ IDEA and check whether the
installation was successful. You should now see a menu entry Run->Profile in IDEA's main menu.

To profile your application from IntelliJ IDEA, choose one of the profiling commands in the Run menu,
the context menu in the editor, or click on the corresponding toolbar button.

S €0 %G o[E] 5 e

Main toolbar with "Profile" button

-46 -

http://www.intellij.com

G Tools Cvs Window Help

= Run Umschalt+F10
Debug Imschalk+F3
Profile
Edit Configurations
B ctop Skrg+Fz
Reload Changed Classes
L9 Step Over Fa
"% StepInko F?
@ Step Out Umnschalt+Fa
i Force Step Into Umschalk+F7
b Run ko Cursor Alt+F3
*& Pop Frame
Bl Pause Pragram
P Fesume Progran F3
B Evaluate Expression... Al+Fa
Quick, Evaluate Exprassion Alt+Urnschalk+Fa
*= Show Execution Paint AlE+F10
Toggle Line Breakpoink Strg+F3
Toggle Method Breakpoint
Toggle Breakpoinkt Enabled
33 Yiew Breakpaoints Skra+Umschalt+F3
Export Threads...

"Run" menu with "Profile" action

- 47 -

s cut Shrg+¥

Lé‘ Copry Skrg+C
Copy Path Stro+Umschalk+C

=| Paste Skrg+Y
Paste... Strg+HUmschalt+Y
Colurnn Mode Alt+Hmschalt+Einfg
Find Usages. .. Al+F7
Analyze]
Refactor]
Folding]
Close Skrg+F4
Go To b
Generate. .. Alt+Einfg
Compile 'Test. java’ Skrg+Umschalt+F2

[Run "Test.main)" Strg+Umschalt+F10

éé} Debug "Test, main)"

@_ Prafile "Test, main()" I
Local Histary J
Vs »

Editor context menu with "Profile" action

JProfiler can profile all run configuration types from IDEA, also applications servers. To configure
further settings, please edit the run configuration, choose the "Startup/Connection" tab, and select
the "Profile" entry. The screenshot below shows the startup settings for a local server configuration.
Depending on the run configuration type, you can adjust JVM options or retrieve profiling parameters
for remote profiling.

-48 -

Server || Deploymert | StattupiConhection
B Run Startup scrigt: Use detfallt

P Debu
Shutdowwn script: uze default
Profile

Environtment Yariahles

Paszs environment variables

't] _
Matme | Walue |
Jan A OPTS | -¥hootclasspathva: C:hometingoyoro)... |
Server JYM: | C:Program Filesidkl 4 2 E]

|:| Open in nesy JProfiler windowy

Startup settings for profiling of a local server configuration

For all run configuration types you can decide whether you want to open a new window in JProfiler
for the profiling session or if you wish to reuse the last window to accommodate the profiling session.

The profiled application is then started just as with the usual "Run" commands. If no instance of
JProfiler is currently running, JProfiler is also started, otherwise the running instance of JProfiler will
be used for presenting profiling data.

When JProfiler is started from IntelliJ IDEA, the "Show source" action for a class or a method in one
of JProfiler's view will show the source element in IDEA and not in JProfiler's integrated source code
viewer.

You can also open JProfiler snapshots from IDEA, either from the project window or the open file
dialog in order to get source code navigation into IDEA.

B.3.3 JProfiler as an Eclipse 2.x / WSAD 5.x Plugin

When JProfiler is integrated into the eclipse 2.x IDE or into WSAD 5.x (which is based on eclipse
2.1), JProfiler can be invoked from within the IDE without any further need for session configuration.

Requirements: The eclipse 2.x plugin works with eclipse 2.0, eclipse 2.1 and WSAD 5.x. In the
following text, the IDE will always be called "eclipse”. For eclipse 3, a different plugin [p. 52] with more
capabilities is available.

Profiling a Java EE application from WSAD:

With the IDE integration for WSAD, only run configurations of type "Java application” can be profiled.

To profile a Java EE application from within WSAD, please choose Session->Integration wizards->New
server integration from JProfiler's main menu and select the server integration type IBM Websphere
started from WSAD. The integration wizard [p. 42] will lead you step by step through the required
modifications to profile your server.

-49-

http://www.eclipse.org
http://www.ibm.com/software/awdtools/studioappdev/

The installation of the eclipse plugin is started by selecting "eclipse 2.x" or "IBM WSAD 5.x" on the

« |IDE integration tab of JProfiler's setup wizard [p. 44]

« miscellaneous options tab [p. 105] of JProfiler's general settings [p. 104] (use Session->IDE integrations
in JProfiler's main menu as a shortcut).

and clicking on [Integrate]

Reminder: Please close eclipse while performing the plugin installation. If you are performing the
installation from JProfiler's setup wizard [p. 44], please complete the entire setup first before starting
eclipse.

A file selector will then prompt you to locate the installation directory of eclipse. For WSAD, this is
the directory that contains the "eclipse" subdirectory.

After acknowledging the completion message, you can start eclipse and check whether the installation
was successful. If the menu item Run->Invoke JProfiler does not exist in the Java perspective, please
enable the JProfiler plugin for this perspective under Window->Customize perspective by opening
the Other section and checking "JProfiler".

To profile your application from eclipse, choose Run->Invoke JProfiler from eclipse's main menu or
click on the corresponding [l toolbar button.

N -HEa FIE R

Main toolbar with "JProfiler" button

-850 -

Window Help

Launch the YWeb Services Explorer

EJ Invoke JProfiler

% Fun Last Launched Chrl+F11

¥, Debug Last Launched F11
Fun History +
Run As koL
Fun...
Debig Hiskory r
Debug As 3
Debug...

=

=]

addfRemove S0L] Method Breakpoink
AddfRemove S0LI W akchpoint

@ Add/Remove Breakpoint kel Shift+B
Jg #dd Java Excepkion Breakpaink

@ Add/Remove Method Breakpoint

“}ﬂ Add/Remove YWatchpoink

&g External Toals r

"Run" menu with "JProfiler" action

A dialog with the available launch configurations will be displayed. Choose the desired configuration
and press [OK]. If JProfiler has already been opened from eclipse, you can check the Open i n new
wi ndow option to open a new window of JProfiler for the profiling session. Otherwise the last used
main window will accommodate the profiling session.

If no instance of JProfiler is currently running, JProfiler is started, otherwise the running instance of
JProfiler will be used for starting the application and for presenting profiling data. The information
contained in the launch configuration is transmitted to JProfiler. With this information, JProfiler
immediately starts a new profiling session. When you close the window, JProfiler asks you if you want
to save the session for standalone execution. If you answer with yes, you can enter a name for the
session. You will then be able to start it from the start center [p. 41] or from the open session dialog
[p- 88] if you open JProfiler as a standalone application.

All profiling settings and view settings changes are persistent across session restarts.

When JProfiler is used with the eclipse integration, the "Show source" action for a class or a method
in one of JProfiler's view will show the source element in eclipse and not in JProfiler's integrated
source code viewer.

-51-

Note: To configure a native library path, please define the VM parameter - Dj ava. | i brary. path
in eclipse, it will be translated to the native library path by JProfiler.

The used JProfiler installation can be changed by repeating the integration from JProfiler or by adjusting
the JProfiler executable in eclipse under Window->Preferences->JProfiler. When you upgrade to a
newer version of JProfiler, make sure to repeat the integration, since the plugin has to be updated,
too.

B.3.4 JProfiler as an Eclipse 3.x Plugin

When JProfiler is integrated into the eclipse 3.x IDE, JProfiler can be invoked from within the IDE
without any further need for session configuration.

Requirements: The eclipse 3.x plugins work with the full SDKs for eclipse 3.x. The JProfiler
integration does not work with partial installations of the eclipse framework. For eclipse 2.x, a different
plugin [p. 49] is available.

The installation of the eclipse plugin is started by selecting "eclipse 3.0" or "eclipse 3.1" on the

» |IDE integration tab of JProfiler's setup wizard [p. 44]

» miscellaneous options tab [p. 105] of JProfiler's general settings [p. 104] (use Session->IDE integrations
in JProfiler's main menu as a shortcut).

and clicking on [Integrate]

Reminder: Please close eclipse while performing the plugin installation. If you are performing the
installation from JProfiler's setup wizard [p. 44], please complete the entire setup first before starting
eclipse.

A file selector will then prompt you to locate the installation directory of eclipse.

After acknowledging the completion message, you can start eclipse and check whether the installation
was successful. If the menu item Run->Profile ... does not exist in the Java perspective, please
enable the "Profile" actions for this perspective under Window->Customize perspective by bringing
the Command tab to front and selecting the "Profile" checkbox.

eclipse provides shared infrastructure for profiling plugins that allows only one active profiler at a time.
If another profiler has registered itself in eclipse, JProfiler will show a collision message dialog at
startup. Please go to the pl ugi n directory in your eclipse installation and delete the plugins that are
specified in the warning message in order to guarantee that JProfiler will be used when you click on
one of the profiling actions.

If you are upgrading the integration from JProfiler <=3.2, please delete your Eclipse "configuration"
directory except the config.ini file before restarting Eclipse. This is to avoid a common Eclipse 3.x
plugin cache bug.

To profile your application from eclipse, choose one of the profiling commands in the Run menu or
click on the corresponding toolbar button. The profile commands are equivalent to the debug and run
commands in eclipse and are part of eclipse's infrastructure.

CI - H-O01-1Q- B HEHGE- @ =

Main eclipse toolbar with "Profile” button

-52-

http://www.eclipse.org

Window Help
1 L]

-]

7

", Skip All Breakpoinks

J; #dd Java Exception Breakpaint, .,
#dd Class Load Breakpoint, ..

Ii~:'§1>F‘J_||'| Last Launched Chrl4+F11
%, Debug Last Launched Fii
g - Profile Last Launched

Run History L4
Run As k
Run...
Cebug Hiskory k
Debug As 3
Cebug...
Profile Hiskory »
Profile As r
Prafile...
.'\
%
G, External Tocls »

eclipse "Run" menu with "Profile" actions

The profiled application is then started just as with the usual "Run" commands. If no instance of
JProfiler is currently running, JProfiler is also started, otherwise the running instance of JProfiler will
be used for presenting profiling data.

Every time a run configuration is profiled, a dialog box is brought up that asks you whether a new
window should be opened in JProfiler. To get rid of this dialog, you can select the "Don't ask me
again" checkbox. The window policy can subsequently be configured in the JProfiler settings in eclipse
(see below).

All profiling settings and view settings changes are persistent across session restarts.

When JProfiler is used with the eclipse integration, the "Show source" action for a class or a method
in one of JProfiler's view will show the source element in eclipse and not in JProfiler's integrated
source code viewer.

You can also open JProfiler snapshots from eclipse, either from the project window or the open file
dialog in order to get source code navigation into eclipse.

Several JProfiler-related settings can be adjusted in eclipse under Window->Preferences->JProfiler:

-B53 -

» The used JProfiler installation can be changed by repeating the integration from JProfiler or by
adjusting the JProfiler executable in the corresponding text field. When you upgrade to a newer
version of JProfiler, make sure to repeat the integration, since the plugin has to be updated, too.

e The window policy can be configured as

+ Ask each time

Every time you profile a run configuration, a dialog box will ask you whether a new window
should be opened in JProfiler. This is the default setting.

« Always new window

Every time you profile a run configuration, a new window will be opened in JProfiler.
* Reuse last window

Every time you profile a run configuration, the last window will be reused in JProfiler.

« You can manually repeat the collision detection that is performed at startup. With the corresponding
checkbox, you can also switch off collision detection at startup.

* You can ask JProfiler to always use interpreted mode for profiling. A separate checkbox tells
JProfiler to use the deprecated JVMPI interface when profiling with a 1.5 JRE. Both these settings
are trouble-shooting options and should normally not be selected.

For eclipse 3.2 and higher, profiling WTP run configurations is supported.

B.3.5 Using JProfiler with IBM RAD 6.x

Since IBM RAD 6.x is based on eclipse 3.0, the RAD plugin works just like the plugin for eclipse 3
[p. 52] . However there are a few important points to notice about the integration process as well as
the usage of the plugin.

The installation of the IBM RAD plugin is started by selecting IBM RAD 6.x on the

« |IDE integration tab of JProfiler's setup wizard [p. 44]

» miscellaneous options tab [p. 105] of JProfiler's general settings [p. 104] (use Session->IDE integrations
in JProfiler's main menu as a shortcut).

and clicking on [Integrate]

Reminder: Please close IBM RAD while performing the plugin installation. If you are performing the
installation from JProfiler's setup wizard [p. 44], please complete the entire setup first before starting
IBM RAD.

A file selector will then prompt you to locate the installation directory of IBM RAD. The installation
directory must contain an ecl i pse directory.

eclipse provides shared infrastructure for profiling plugins that allows only one active profiler at a time.
If another profiler has registered itself in eclipse, JProfiler will show a collision message dialog at
startup. While eclipse does not ship with any profilers, IBM RAD 6.x has an integrated profiler. The
way in which eclipse selects the profiler that's bound to the "Profile” buttons is undefined. As it happens,
the JProfiler plugin is selected before the integrated profiler. To get rid of the collision message that
is shown at startup, please perform the following steps:

e Locate ecl i pse/ pl ugi ns/org. eclipse. hyades. trace. ui _n.n.n/plugin.xm where
n.n.n is a version number like 3.0.1

-54-

http://www.ibm.com/software/awdtools/studioappdev/

* Replace all instances of "profile" with "tptp" in the above file. Please note that the quotes are part
of the search and replace expressions. If you remove JProfiler, you can revert this change by
replacing "tptp" with "profile”.

« Delete the directory ecl i pse/ confi gurati on/ org. ecli pse. osgi . The plugin cache will be
rebuilt on the next startup of RAD. This is necessary since otherwise RAD does not notice the
above change.

Only launch configuration types that exist in eclipse 3.0 can be profiled by the JProfiler plugin.
Specifically, the Websphere and Apache Tomcat launch configuration types cannot be profiled with
the JProfiler plugin. For these servers, please use the corresponding server integration wizard [p. 42]

The Websphere integration wizard asks you to locate the server.xm file that contains the
configuration for your Websphere server, Finding this file can be a little difficult. If you start your search
at

{RAD install directory}/runtines/base_v6/profil es/default/config/cells/
you can locate the config file in
$CELL/ nodes/ $NODE/ ser ver s/ $SERVER

where $CELL, $NODE and $SERVER depend on your system and the target server.

In addition, the integration wizard asks to locate a startup script named st art Ser ver . bat . That
script can be found in { RAD i nstal | directory}/runtimes/base v6/bin/.

B.3.6 JProfiler as a JBuilder OpenTool

With JProfiler integrated into Borland's JBuilder, JProfiler can be invoked from within the IDE without
any further need for session configuration.

Requirements: JProfiler requires at least JBuilder 7.0

The installation of the JBuilder OpenTool is started by selecting "JBuilder 7 to 2005" on the

« |IDE integration tab of JProfiler's setup wizard [p. 44]

» miscellaneous options tab [p. 105] of JProfiler's general settings [p. 104] (use Session->IDE integrations
in JProfiler's main menu as a shortcut).

and clicking on [Integrate]

Reminder: Please close JBuilder while performing the OpenTool installation. If you are performing
the installation from JProfiler's setup wizard [p. 44] , please complete the entire setup first before
starting JBuilder.

A file selection box will then prompt you to locate the installation directory of JBuilder.

After acknowledging the completion message, you have to start JBuilder and set JProfiler as the
optimizer for your project. Invoke Run->Configurations from JBuilder's main menu, select a runtime
configuration, press [Edit] and select the "Optimize" tab in the resulting runtime properties dialog. If
an optimizer type with the name "JProfiler" exists on this tab, the OpenTool was recognized correctly.
Activate this optimizer and then click [OK].

-B5 -

http://www.borland.com/jbuilder/

(W Edit Runtime Configuration

Marne: | ‘Welcome

EA ()

Build target: ake

Optimize

Trype: |.JF‘r|:|fiIer b |

vYWhen optimizing, JProfiler will be started ar an already running
instance of JPrafiler will be used.

JProfiler executable: | aomeingoiprojectsiprofilerdist'binyprofiler exe | []

Open nesy svindowy in JProfiler

@ Ask each time {:}' Alveays newy window {:} Reuse last window

[ik l[Cancel][Help]

Optimizer configuration dialog

To profile your application from JBuilder, choose one of the profiling commands in the Run menu or
click on the corresponding toolbar button.

4 | LG REEN R 0 o R R

Main toolbar with "Optimize" button

-56 -

Team Enterprise Tools Window Help Purchase
b Run Praject Fa

FE Debug Project Urnschalk+F3
i’@ Opkimize Project

b Run "Welcomedpp java" using "Welcome"

h:‘* Debug "WelcomeApp. java" using "Welcome"

i‘@ Cptimize "Welcomespp,java” using “Welooms"

Configurations. ..
"o Step Over F3
" Step Inko F7

i

. 4

i

"Run" menu with "Optimize" actions

Mew ¥
Open
Rename "WelcomeApp.java"...
3
Delete File "Welcomespp, java”
p Runusing "Welcome"

h]' Cebug using “welcome"

ﬁ‘@ Optimize using "Welcome"

¥ Clean
lTT—.'.% Make
2" Rebuild
@ Format "Welcomespp.java”
Propetties. ..
Project explorer context menu with "Optimize" action
The profiled application is then started just as with the usual "Run" commands. If no instance of

JProfiler is currently running, JProfiler is also started, otherwise the running instance of JProfiler will
be used for presenting profiling data.

Every time a run configuration is profiled, a dialog box is brought up that asks you whether a new
window should be opened in JProfiler. To get rid of this dialog, you can select the "Don't ask me

again" checkbox. The window policy can subsequently be configured in the optimizer settings in
JBuilder (see below).

All profiling settings and view settings changes are persistent across session restarts.

-57-

When JProfiler is started from JBuilder, the "Show source" action for a class or a method in one of
JProfiler's view will show the source element in JBuilder and not in JProfiler's integrated source code
viewer.

Several JProfiler-related settings can be adjusted in JBuilder under
Run->Configurations->Edit->Optimize:

» The used JProfiler installation can be changed by repeating the integration from JProfiler or by
adjusting the JProfiler executable in the corresponding text field. When you upgrade to a newer
version of JProfiler, make sure to repeat the integration, since the OpenTool has to be updated,
too.

e The window policy can be configured as

+ Ask each time

Every time you profile a run configuration, a dialog box will ask you whether a new window
should be opened in JProfiler. This is the default setting.

« Always new window

Every time you profile a run configuration, a new window will be opened in JProfiler.
* Reuse last window

Every time you profile a run configuration, the last window will be reused in JProfiler.

« You can ask JProfiler to always use interpreted mode for profiling. A separate checkbox tells
JProfiler to use the deprecated JVMPI interface when profiling with a 1.5 JRE. Both these settings
are trouble-shooting options and should normally not be selected.

B.3.7 JProfiler as a JDeveloper Addin

With JProfiler integrated into Oracle's JDeveloper, JProfiler can be invoked from within the IDE without
any further need for session configuration.

Requirements: JProfiler requires JDeveloper 10.1.3 or JDeveloper 11g.

The installation of the JDeveloper addin is started by selecting "JDeveloper (your version)" on the

» |IDE integration tab of JProfiler's setup wizard [p. 44]

» miscellaneous options tab [p. 105] of JProfiler's general settings [p. 104] (use Session->IDE integrations
in JProfiler's main menu as a shortcut).

and clicking on [Integrate]

Reminder: Please close JDeveloper while performing the addin installation. If you are performing
the installation from JProfiler's setup wizard [p. 44] , please complete the entire setup first before
starting JDeveloper.

A file selection box will then prompt you to locate the installation directory of JDeveloper.

After acknowledging the completion message, you can start JDeveloper and check whether the
installation was successful. You should now see a menu entry Run->Profile with JProfiler in
JDeveloper's main menu.

To profile your application from JDeveloper, choose one of the profiling commands in the Run menu
or click on the corresponding toolbar button.

NSHS PANXBRRRE e 0«0 @EHEE n g[F]

Main toolbar with "JProfiler" button

-58 -

http://http://www.oracle.com/technology/products/jdev/index.html

Qel:uug Yersioning Tools Window Help
1 Run _Inkro.jpr Fi1

| @_ Prafile _Intro,jpr with JPrafiler

Make ExtensionSDK, jws
i Make _Intro.jpr Strg+Fa

Rebuild ExtensionSOk. jws
i Rebuild _Inkro.jpr Alt+Fg
i
{8 Event Profile _Intro.jpr
{8 Execution Profile _Intro.jpr
{& Mermary Profile _Intra.jpr
B Load Profile Results. .
@ CodeCoach _Intro.jpr
EE"

Deploy]

"Run" menu with "JProfiler" actions

Qpen
Make Strg+Urschalt+F9
B Run
E Prafile with JPrafiler I
@ Debug
3 show Dependencies

Campate With]
Create 12EE Web Service
L create Data Contral

Project explorer context menu with "JProfiler" action

The profiled application is then started just as with the usual "Run" commands. If no instance of
JProfiler is currently running, JProfiler is also started, otherwise the running instance of JProfiler will
be used for presenting profiling data.

Every time a run configuration is profiled, a dialog box is brought up that asks you whether a new
window should be opened in JProfiler. To get rid of this dialog, you can select the "Don't ask me
again" checkbox. The window policy can subsequently be configured in the "JProfiler" node in the
settings dialog of JDeveloper (see below).

All profiling settings and view settings changes are persistent across session restarts.

When JProfiler is started from JDeveloper, the "Show source" action for a class or a method in one
of JProfiler's view will show the source element in JDeveloper and not in JProfiler's integrated source
code viewer.

-50 -

Several JProfiler-related settings can be adjusted in JDeveloper under Tools->Preferences->JProfiler:

» The used JProfiler installation can be changed by repeating the integration from JProfiler or by
adjusting the JProfiler executable in the corresponding text field. When you upgrade to a newer
version of JProfiler, make sure to repeat the integration, since the addin has to be updated, too.

e The window policy can be configured as

+ Ask each time

Every time you profile a run configuration, a dialog box will ask you whether a new window
should be opened in JProfiler. This is the default setting.

« Always new window

Every time you profile a run configuration, a new window will be opened in JProfiler.
* Reuse last window

Every time you profile a run configuration, the last window will be reused in JProfiler.

« You can ask JProfiler to always use interpreted mode for profiling. A separate checkbox tells
JProfiler to use the deprecated JVMPI interface when profiling with a 1.5 JRE. Both these settings
are trouble-shooting options and should normally not be selected.

B.3.8 JProfiler as a Netbeans 5.x/6.x Module

With JProfiler integrated into Sun Microsystems' Netbeans(TM), JProfiler can be invoked from within
the IDE without any further need for session configuration.

Requirements: Netbeans 5.x or 6.x.

The installation of the Netbeans module is started by selecting "Netbeans IDE (your version)" on the

» |IDE integration tab of JProfiler's setup wizard [p. 44]

» miscellaneous options tab [p. 105] of JProfiler's general settings [p. 104] (use Session->IDE integrations
in JProfiler's main menu as a shortcut).

and clicking on [Integrate]

Reminder: Please close Netbeans while performing the module installation. If you are performing
the installation from JProfiler's setup wizard [p. 44] , please complete the entire setup first before
starting Netbeans.

A file selection box will then prompt you to locate the installation directory of Netbeans. In the next
step, you are asked whether the installation should be performed globally, or for a single user only.
A single user installation is mostly of interest in network installations where the user cannot write to
the Netbeans installation directory. If you decide for a single user installation, another file selection
box will then prompt you to locate your Netbeans user directory. This is a version-specific directory
under . net beans in your user home directory.

The Netbeans updater is then invoked and the module is installed. After acknowledging the completion
message, you can start Netbeans and check whether the installation was successful. You should
now see a menu entry JProfiler top-level menu in Netbeans' main menu.

You can profile standard and free form projects in Netbeans. For free form projects, you have to
debug vyour application once before trying to profile it, since the required file
nbproj ect/ide-targets. xnl is set up by the debug action. JProfiler will add a target named
"profile-jprofiler" to it with the same contents as the debug target and will try to modify the VM

-60 -

http://www.netbeans.org

parameters as needed. If you have problems profiing a free form project, please check the
implementation of this target.

You can profile web applications with the integrated Tomcat or with any other Tomcat server
configured in Netbeans. When your main project is a web project, selecting "Profile main project with
JProfiler" (see below) starts the Tomcat server with profiling enabled. Please make sure to stop the
Tomcat server before trying to profile it.

If you use Netbeans with the bundled Sun Java System Application Server, you can transparently
profile Java EE applications with it. When your main project is set up to use Sun Java System
Application Server, selecting "Profile main project with JProfiler" (see below) starts the application
server with profiling enabled. Please make sure to stop the application server before trying to profile
it.

To profile your application from Netbeans, choose one of the profiling commands in the Run menu
or click on the corresponding toolbar button.

LY &>

Main toolbar with "JProfiler" button

Refactor Wersioning Tools window Help
(] Profile file with JProfiler F3
Prafile main project with JProfiler Strg+Umschalt+F3
¥
zeneral settings
i Enter license key
[# Contact support
[Conkact sales
& JProfiler an the web
About IProfiler

"JProfiler" menu

-61-

Qpen

Zompile File Fa

Fun File: Irnschalk+F&
Profile file with JProfiler F3

Debiug File Strg+Umschalk+F5
Cuk Skrg+s

Copy Skrg+C

Add [
Delete Entf

Save As Template, ..

Find Usages. ., Alt+F7

Refackar [
Tools b
Properties

Explorer context menu with "JProfiler" action

The profiled application is then started just as with the usual "Run" commands. When a profiling
session is started, a new tab with a JProfiler window is created.

Profiling sessions are closed by closing the corresponding tab. Apart from the excluded tool bar
buttons for "Attach/Detach" and "Session settings", the JProfiler window and its views are exactly the
same as in the standalone version [p. 107] .

All profiling settings and view settings changes are persistent across session restarts.

When JProfiler is used with the Netbeans integration, the "Show source" action for a class or a method
in one of JProfiler's view will show the source element in Netbeans and not in JProfiler's integrated
source code viewer.

You can also open JProfiler snapshots from Netbeans, either from the project window or the open
file dialog in order to get source code navigation into Netbeans.

The JProfiler menu in Netbeans' main menu bar contains all actions required to run JProfiler from
within Netbeans:

* Profile file with JProfiler

[@ start profiling the currently selected class.
« Profile project with JProfiler

Start profiling the main class of the current project.
« Edit
Contains the JProfiler's view specific View menu which is active only during profiling.
e General settings
Brings up the general settings dialog that contains the Fi | ter sets and M scel | aneous
tabs of the standalone version [p. 104] . In addition, it contains a General profiling options
tab. On that tab you can ask JProfiler to always use interpreted mode for profiling. A separate

checkbox tells JProfiler to use the deprecated JVMPI interface when profiling with a 1.5 JRE.
Both these settings are trouble-shooting options and should normally not be selected.

e Enter license key

-62-

Allows you to enter your license key [p. 4] .
Contact sales

B Brings up your default mail client to write an e-mail to ej-technologies' sales department.
Contact support

B Brings up your default mail client to write an e-mail to ej-technologies’ support department. The
license key is automatically included in the subject of the e-mail.

JProfiler on the web

B connects to JProfiler's web site in the default web browser.
About JProfiler

Shows general information about your copy of JProfiler and its license status.

-63-

B.4 Managing sessions

B.4.1 Sessions Overview

The information required to start a profiling run is called a session. Sessions are saved in the file
{User home directory}/.jprofiler6/config.xm andcan be easily migrated to a different
computer by importing this file in the setup wizard [p. 44] . When upgrading JProfiler, your settings of
older installations are imported automatically.

Sessions are created

« onthe "New Session" tab of JProfiler's start center [p. 41] .
* by selecting Session->New session from JProfiler's main menu.
« automatically by JProfiler's application server integration wizard [p. 42] .

* by importing them [p. 42] . from en external config file.

Sessions are edited, deleted and opened

* in JProfiler's start center [p. 41].

« through the open session dialog [p. 88] which is accessible from JProfiler's main menu via
Session->0Open session.

The session settings dialog can be invoked from

» the open session dialog [p. 88] or the start center [p. 41] .

 the the session startup dialog [p. 88] that is displayed just before a session is started.

JProfiler's main menu and the toolbar. The El toolbar button and the menu item Session->Session
settings open the session settings dialog.

The session settings dialog is divided into 4 sections:

* Application settings

The application settings section [p. 65] collects all information that is required to start your application
with profiling enabled or to connect to a running JVM that has already been started with profiling
enabled. If you use an IDE integration [p. 46], this information will be provided by the IDE.

« Filter settings

In the filter settings section [p. 69], you define which classes should be considered when recording
call-stack information. Defining appropriate filters will help you to reduce data overload and
minimizing CPU profiling overhead. By default, JProfiler adds an exclusion list

¢ Profiling settings

In the profiling settings section [p. 73] you can configure the way your application is profiled and
change the focus of a profiling run toward performance or accuracy, CPU or memory profiling.

« Trigger settings

In the trigger settings section [p. 69] you can optionally define a list of triggers. With triggers, you
can tell the profiling agent to execute specific actions when certain events occur in the JVM. The
actions are also executed during offline profiling [p. 225] .

If you change filter, profiling or trigger settings for an active session, the new settings can be applied
immediately if you profile a 1.6+ JRE. Apart from telemetry data, all recorded data including the

-64-

heap dump in the heap walker will be discarded in that case. When profiling settings are updated, a
bookmark [p.114] will be added to views with a time-line, such as the telemetry views. The application
of the new profiling settings may take some time, especially if filter settings are changed and the
method call recording type is set to dynamic instrumentation. In this case, changes in the
instrumentation requires that classes have to be retransformed to reflect the new filter settings.

If you profile a pre-1.6 JRE, you have to restart the session.

View settings on the other hand, are always adjustable during a running session and are saved
separately for each session.

B.4.2 Application settings

B.4.2.1 Application Settings

The application settings section of the session settings dialog [p. 64] collects all information that is
required to start your application with profiling enabled. If you use an IDE integration [p. 46] , this
information will be provided by the IDE.

e Session name

Every session has a unique name that is presented in the "Open session" pane of the start center
[p. 41] and in the open session dialog [p. 88] . It is also used for the title of the main window and
the terminal window. Next to the name text field you see an ID which is used for choosing the
session in offline profiling [p. 225] or for remote profiling with the "nowait" option [p. 93] (in the latter
case only relevant if the profiled JVM has a version of 1.5 or earlier).

e Session type

There are four different session types. Depending on this choice, the middle part of the tab will
display different options.

* Local sessions [p. 66]

[1 A local session starts your application when the session is opened. You have to specify the
virtual machine, as well as your application's class path, main class, parameters and working
directory. Your application will be started in a separate terminal window. Local sessions are
most convenient for profiling GUI and console applications where you have written the main
class yourself.

* Remote sessions [p. 67]

A remote session connects to a running application which has been started with JProfiler's
profiling agent [p. 89] . The profiling agent listens on the default port of 8849 which can be
changed in the agent's initialization parameters. Remote sessions are most convenient for
profiling server applications on remote machines and application servers where you write classes
which are loaded and invoked within the framework of the application server.

e Applet sessions [p. 68]

@ Applet sessions are used for profiling applets with Sun's applet viewer which is shipped with
every JDK. You only have to supply the URL to a HTML page containing the applet.

Note: If the applet viewer is too restrictive for your applet, please use the Java plugin integration
wizard available on the New sessi on tab of the start center [p. 41] to profile the applet directly
in the browser.

* Web Start sessions [p. 69]

[JProfiler can profile Java Web Start applications. You only have to supply the URL for the
JNLP file or select a cached application.

- 65 -

http://java.sun.com/products/javawebstart/

Java file path
With the radio buttons on the left you can switch between the

e Class path

The class path consists of directories and jar files that are used for the -classpath VM argument.
The class path is also used by the bytecode viewer [p. 116] to find class files for display.

e Source path

The source path optionally lists archives and directories that contain source code for some or
all of the entries in the class path. Note that the sources of the selected JDK contained in
src.jar orsrc. zi p will be automatically appended if they are installed. The source path is
is used by the source code viewer [p. 116] to display Java sources.

* Native library path

The native library path consists of directories that are added to the native library envrironment
variable. The name of the native library envrironment variable depends on the operating system.
You only have to specify the native library path when you load native libraries by calling
j ava. |l ang. Syst em | oadLi brary() or for resolving dependent libraries that have to be
dynamically loaded by your native libraries.

When clicking the B8 add button you can select multiple path entries to the path list in one go from
the file chooser. Alternatively, to quickly add a list of path entries defined elsewhere, you can copy

a path from the system clipboard by clicking rd copy button. The path must consist of either

« asingle path entry

« or multiple path entries separated by the standard path separator (";" on Windows, ":" on UNIX)
or by line breaks.

Each path entry can be

e absolute
The path entry is added as it is.
- relative

On the first occurrence of a relative path, JProfiler brings up a directory chooser and asks for
the root directory against which relative paths should be interpreted. All subsequent relative
paths will be interpreted against this root directory.

JProfiler will only add unique path entries into the list. If no new path entry could be found, a
corresponding error message is displayed.

Note: Adjusting the class and source path during an active session is effective for the source code
and bytecode viewer [p. 116] only.

B.4.2.2 Local Session

If the session type in the application settings [p. 65] is set to "Local", the following settings are displayed
in the middle part of the dialog:

Java VM

Choose the Java VM to run your application. Java VMs are configured on the "Java VMs" tab [p.
104] of JProfiler's general settings [p. 104] which are accessible by clicking the [General settings]
button on the bottom of the dialog.

- 66 -

e Working directory

Choose the directory in which your java process will be started either manually or by clicking on
the [...] button to bring up a file chooser. As long as you have not selected a particular directory,
this option is setto [startup directory] which means that JProfiler's startup directory will
also be your application's working directory.

« VM arguments

If your application needs virtual machine arguments of the form - Dpr oper t y=val ue, you can
enter them here. Parameters that contain spaces must be surrounded with double quotes (like
"-DparamFa paraneter wth spaces").

* Main class or executable JAR

Enter the fully qualified name of your main class or the path to an executable JAR file here. If you
enter a main class, it has to be contained in class path (see above).

Clicking on the [...] button brings up menu that lets you

e Search the classpath

If you have already configured your classpath, this option will search for classes with a main
method and present them in the main class selection dialog.

* Browse for an executable JAR file

This brings up a file chooser where you can select an executable JAR file. If the JAR file has a
Class-Path manifest entry, you will be asked whether the class path should be replaced with
the contents of that attribute. Also, the working directory will be set to the parent directory of the
executable JAR file after a confirmation.

* Browser for a .class file

This brings up a file chooser where you can select the *. cl ass file of the desired main class.
A dialog box will ask you whether to add the associated class path root directory to the class
path.

e Arguments

This is the place to enter any arguments you want to supply to the main class of your application.
Arguments that contain spaces must be surrounded with double quotes (like "a par anet er
wi th spaces").

e Open browser with URL
If you would like to open a browser window along with the session, please select this checkbox
and enter the URL in the adjacent text field. JProfiler polls this URL until it becomes available, only

then is the browser opened. Please set the browser start command [p. 105] if you're working on a
UNIX platform.

B.4.2.3 Remote session

If the session type in the application settings [p. 65] is set to "Remote", the following settings are
displayed in the middle part of the dialog:

* Host

Enter the host on which the application you want to profile is running either as a DNS name or as
an IP address. If this is your local computer, you may enter | ocal host .

e Port

-67-

Choose the port on which the remote profiling agent is listening. If you have not supplied a port
parameter [p. 93], the default port 8849 is the correct choice. This default can be restored by clicking
the [Default] button on the right side of the text field.

Timeout

Choose the timeout in seconds after which JProfiler will give up trying to connect to the remote
application.

Start command

If you enable the "start command" checkbox and enter the path to an executable in the text field
to the right, JProfiler will execute this command before trying to connect to the remote application.
The output of that command will be displayed in a terminal window similar to the "local" session
type [p. 65] . In this case JProfiler has full control over the life cycle of the profiled application. If the
terminal window is closed, the stop button is clicked or JProfiler is exited, the process will be killed
if it is still alive.

The application server integration wizard uses start commands to make it easy to profile application
servers. should you want to take control of the launching of the application server you can temporarily
uncheck the "start command" checkbox while preserving the suitable start command.

Stop command

If you enable the "stop command" checkbox and enter the path to an executable in the text field
to the right, JProfiler will execute this command when disconnecting from the remote application,
i.e. when the terminal window is closed, the stop button is clicked or JProfiler is exited.

The application server integration wizard uses stop commands where possible.
Open browser with URL

If you would like to open a browser window along with the session, please select this checkbox
and enter the URL in the adjacent text field. JProfiler polls this URL until it becomes available, only
then is the browser opened. Please set the browser start command [p. 105] if you're working on a
UNIX platform.

The [config synchronization options] button brings up the config synchronization options dialog
[p. 102] .

B.4.2.4 Applet Session

If the session type in the application settings [p. 65] is set to "Applet”, the following settings are
displayed in the middle part of the dialog:

Java VM

Choose the Java VM to run your applet. The main class sun. appl et . Appl et Vi ewer from the
t ool s. j ar of the selected JVM will be used to show the applet. Java VMs are configured on the
"Java VMs" tab [p. 104] of JProfiler's general settings [p. 104] which are accessible by clicking the
[General settings] button on the bottom of the dialog.

URL

Enter a URL pointing to an HTML page which contains the applet. By clicking on the [...] button
you can bring up a file chooser to select an HTML file on your file system.

Note: If the applet view is too restrictive for your applet, please use the Java plugin integration
wizard available on the New sessi on tab of the start center [p. 41] to profile the applet directly in
the browser.

- 68 -

B.4.2.5 Web Start Session

If the session type in the application settings [p. 65] is set to "Web Start", the following settings are
displayed in the middle part of the dialog:

« URL of the JNLP file

Every Web Start application is launched by means of a launch descriptor called a JNLP file. Enter
the URL of the JNLP file in the text field. By clicking on the [...] button you can bring up a dialog
which shows the JNLP URLs of all applications which have already been downloaded by Java
Web Start. Choose one in the list and press [OK] to transfer the URL to the text field.

 Java VM
Choose the Java VM to run Java Web Start and the profiled web start application.

Note: Java VMs are configured on the "Java VMs" tab [p. 104] of JProfiler's general settings [p. 104]
which are accessible by clicking the [General settings] button on the bottom of the dialog.

B.4.3 Filter settings

B.4.3.1 Filter Settings

The filter settings section of the session settings dialog [p. 64] allows you to define the filters that will
be used for recording method calls. For background information on filters, please see the help topic
on method call recording filters [p. 17] .

One exception where the filters configured in this section will not be used is if the "Disable all filters
for sampling" setting is activated on the method call recording [p. 74] tab of the profiling settings dialog

[p. 73] .
The filter settings section is grouped into several tabs:

» Define filters [p. 69]
Define exclusive and inclusive filter rules for packages and classes.
» Exceptional methods [p. 71]

Configure methods whose slow invocations are shown separately in the call tree.
« lgnored methods [p. 72]

Displays methods with excessive instrumentation overhead that were removed by auto-tuning.

B.4.3.2 Define Filters for Method Recording

On this tab of the filter settings [p. 69] , you define filter rules for packages and classes that will be
applied to method call recording [p. 74] .

There are two types of filter rules:

* K& Included packages or classes are profiled and will be shown in the call tree. If the first filter is
inclusive, no classes are profiled by default.

¢ Excluded packages or classes are not profiled and will not be shown in the call tree. If the
first filter is exclusive, all other classes are profiled by default.

All calls from profiled classes are shown in the call tree regardless of whether the called class is
profiled or not. For example, if you only have one inclusive filter for the com nmycor p. packages, and
if your class com nmycor p. Myd ass calls a method in java core classes, all those calls will be

- 69 -

measured, but their internal call structure will not be resolved. In the call tree view [p. 172], such method
calls are opaque and will be labeled with a red corner.

Package filters include all sub-packages. For example, if you have one inclusive filter with the name
com nycorp., it includes all classes directly in the com mycorp. package as well as the
com nycorp. test and the com nmycor p. t est. detai | packages.

Filter rules are evaluated from top to bottom, the last matching rule is applied. For example, if you
add an exclusive filter for the com mycor p. packages, but further down add an inclusive filter for
the com nycor p. t est package, the com mycor p. t est package is profiled while other classes
in the com nmycor p. packages are not.

Adjacent filter rules of the same type can be grouped together. Just select all filters that you wish to
group and select the appropriate action from the context menu. You are then prompted to name the
group. The name of a filter group is only informational. The context menu also offers an action to
ungroup selected groups. Filter rules in filter groups are sorted alphabetically, have a gray background
and cannot be moved. However,they can be deleted from the filter group. To add a new filter rule to
an existing filter group, you first have to ungroup the group and group it again.

By default, the filter rules are configured to exclude a list of common framework classes. All other
classes are included. Whenever you find that the default list is not suitable, or if you would like to
profile classes that are in that list, you should delete the entire exclude group and add your own
inclusive filters. Alternatively, you can delete parts of the default exclude group.

If, at any later point, you wish to restore these default exludes, you can use the & reset filters to
default button on the right side. All current filter settings will be lost in that case.

To analyze the overall filter configuration, you can click on [Show filter tree] and bring up a dialog
[p. 70] that shows you all filter rules in a read-only package hierarchy.

Filter configurations can be saved to filter templates [p. 71] with the I save button, the open button
lets you replace the current filter configuration with a filter template.

On the session defaults [p. 105] tab of the general settings dialog [p. 104] you can change the default
filter template used for new sessions.

You can quickly bring up this tab by clicking on the [Global filters] button that is shown in the bottom
right corner of views that show call trees or time measurements of method calls.

B.4.3.3 View Filter Tree

In this dialog, you can inspect the filters for method call recording [p. 74] in a package hierarchy. This
dialog can be shown by clicking [Show filter tree] on the Define Filters [p. 69] tab of the filter settings

[p. 69] .
The tree shows

« excluded packages

& these packages or classes will not be profiled, they are only shown if they are called directly
from profiled classes.

e included packages
& these packages will be profiled.
« bridge packages

these packages are only shown because there's a filter rule for a descendant package. If the
first node in the tree is an "all other packages" inclusive node, they will be profiled, otherwise not.

-70-

If the first filter rule on the Define Filters [p. 69] tab is exclusive, an "all other packages" inclusive node
is added as the first node in the tree. If the first filter rule is inclusive, there is no automatic addition
to the package tree.

Please note that this is a read-only representation of the filter configuration. For defining filter rules,
please return to the Define Filters [p. 69] tab.

B.4.3.4 Filters Templates
Filter templates can be saved from the Define Filters [p. 69] tab of the filter settings [p. 69]

A filter template captures all configured filter rules from a session configuration. When saving a filter
template, you have to assign a unique name to it. The filter template dialog allows you to reorder,
rename and remove existing filter templates.

The filter template dialog can also be invoked from the session defaults [p. 105] tab of the general
settings dialog [p. 104] where you can change the default filter template used for new sessions.

B.4.3.5 Exceptional Methods

On this tab of the filter settings [p. 69], you define methods whose exceptionally slow invocations will
be shown separately in the call tree view [p. 172] .

Exceptional methods can be used to investigate outliers in the performance of selected methods.
Often, certain methods are supposed to complete quickly, but occasionally an invocation will take
much longer than the median time. In the call tree view, you cannot analyze those outliers, since all
calls are cumulated.

When you register a method for exceptional method recording, a few of the slowest invocations will
be retained separately in the call tree. The other invocations will be merged into a single method node
as usual. The number of separately retained invocations can be configured in the profiling settings
[p- 75] , by default it is set to 5.

When discriminating slow method invocations, a certain thread state can be used for the time
measurement. By default, the wall clock time (all thread states) is used, but a different thread status
can be configured in the profiling settings [p. 75] . Note that the thread status selection in the CPU
views [p. 170] is not used in this case, but the separate setting in the profiling settings is used.

Exceptional method runs are displayed differently in the call tree view [p. 172] . For the concerned
method nodes, icons are changed and text is appended:

* [@[exceptional run]

Such a node contains an exceptionally slow method run. By definition, it will have an invocation
count of one. If many other method runs are slower later on, this node may vanish and be added
to the "merged exceptional runs" node depending on the configured maximum number of separately
recorded method runs [p. 75] .

@ [merged exceptional runs]

Method invocations which do not qualify as exceptionally slow are merged into this node. For any
call stack, there can only be one such node per exceptional method.

[current exceptional run]

If an invocation was in progress while the call tree view was transmitted to the JProfiler GUI, it was
not yet known whether the invocation was exceptionally slow or not. The "current exceptional run"
shows the separately maintained tree for the current invocation. After the invocation completes, it
will either be maintained as a separate "exceptional run" node or be merged into the "merged
exceptional runs" node.

-71 -

To check the statistical properties of the distribution of call times of certain methods of interest,
please start with the method statistics view [p. 186] . It can show you the outlier coefficient and a graph
of call times versus frequency. This analysis allows you to assess whether an outlier is significant or

not. From the method statistics view you can use the (2 Add as exceptional method action in the
context menu to add the method to the list of exceptional methods. The same context action is available
in the call tree view [p. 172].

Apart from removing previously configured exceptional methods, you can also add exceptional methods
directly on this tab of the filter settings. The following ways for selecting methods are available:

e Search in configured classpath

A class chooser will be shown that shows all classes in the classpath configured in the application
settings [p. 65] . Finally you have to select a method from the selected class.

e Search in other JAR or class files

First, you can select a JAR or class file. If the selection is a JRE file, you then have to select a
class in a class chooser. After the selection you will be asked whether to expand the classpath
with the current selection. For remote sessions, the classpath is often not configured, so this is a
shortcut to make your selection permanent. Finally you have to select a method from the selected
class.

e Search in profiled classes

If the session is being profiled, a class chooser is displayed that shows all classes in the profiled
JVM. There may be classes in the classpath that have not been loaded. Those classes will not be
shown in the class chooser. Finally you have to select a method from the selected class.

¢ Enter manually (advanced)

This option displays a dialog that allows you to enter class name, method name and method
signature in JNI format. The JNI format of the method signature is explained in the javadoc of
comjprofiler.api.agent.interceptor.|nterceptionMethod.

The context menu for the list of methods offers the option to edit existing entries.

B.4.3.6 Ignored Methods

On this tab of the filter settings [p. 69] , you see methods that have been identified as overhead hot
spots and that you have accepted into the list of ignored methods.

If the method call recording type [p. 74] is setto Dynami ¢ i nst runent at i on, all methods of profiled
classes [p. 69] are instrumented. This creates some overhead which is significant for methods that
have very short execution times. If such methods are called very frequently, the measured time of
those method will be far to high. Also, due to the instrumentation, the hot spot compiler might be
prevented from optimizing them. In extreme cases, such methods become the dominant hot spots
although this is not true for an uninstrumented run. An example is the method of an XML parser that
reads the next character. This method returns very quickly, but may be invoked millions of times in
a short time span.

This problem is not present when the method call recording type [p. 74] is setto Sanpl i ng. However,
sampling does not provide invocations counts, shows only longer method calls and several view such
as the method statistics view [p. 186] and the call tracer [p. 189] do not work when sampling is used.

To alleviate the problem with dynamic instrumentation, JProfiler has a mechanism called auto-tuning.
From time to time, the profiling agent checks for such methods and transmits them to the JProfiler
GUL. In the status bar, an entry such as & 3 over head hot spot s will be shown. You can click
on that status bar entry to review the detected overhead hot spots and choose to accept them into
the list of ignored methods. These ignored methods will then not be instrumented. When a session
is terminated, the same dialog is shown.

-72 -

All ignored methods will be missing in the call tree. Their execution time will be added to the inherent
time of the calling method. If you find later on, that some ignored methods are indispensable in the
profiling views, you can activate this tab in the filter settings and delete those methods.

In case that you do not want to see messages about auto-tuning, you can disable it in the profiling
settings [p. 75] . Also, several parameters can be adjusted to broaden or narrow the scope of the
methods that are considered as overhead hot spots.

You can also add ignored methods directly on this tab of the filter settings. The following ways for
selecting methods are available:

e Search in configured classpath

A class chooser will be shown that shows all classes in the classpath configured in the application
settings [p. 65] . Finally you have to select a method from the selected class.

e Search in other JAR or class files

First, you can select a JAR or class file. If the selection is a JRE file, you then have to select a
class in a class chooser. After the selection you will be asked whether to expand the classpath
with the current selection. For remote sessions, the classpath is often not configured, so this is a
shortcut to make your selection permanent. Finally you have to select a method from the selected
class.

e Search in profiled classes

If the session is being profiled, a class chooser is displayed that shows all classes in the profiled
JVM. There may be classes in the classpath that have not been loaded. Those classes will not be
shown in the class chooser. Finally you have to select a method from the selected class.

« Enter manually (advanced)

This option displays a dialog that allows you to enter class nhame, method name and method
signature in JNI format. The JNI format of the method signature is explained in the javadoc of
comjprofiler.api.agent.interceptor.|nterceptionMethod.

The context menu for the list of methods offers the option to edit existing entries.

B.4.4 Profiling settings

B.4.4.1 Profiling Settings

In the profiling settings section of the session settings dialog [p. 64] you can adjust a number of
settings that impact profiling detail and overhead. Please see the detailed discussion in the help topic
on profiling settings [p. 13] to get a background understanding of the various available settings.

The profiling settings section displays a list of pre-configured profiling settings templates that are
targeted at a variety of situations. As different templates in the drop down list are selected, the
description box and the performance indicators below it are updated accordingly. Both description
and performance indicators should help you choose the best template for your task at hand. If you
click on the [Customize profiling settings] button below the drop down list, the profiling settings
dialog is opened.

If you customize the profiling settings, the text in the drop down list changes to "[Customized]". You
can save new profiling settings templates with the [Save as template] button. The profiling settings

template dialog [p. 80] is then displayed.

On the session defaults [p. 105] tab of the general settings dialog [p. 104] you can change the default
profiling settings template used for new sessions.

The profiling settings dialog is grouped into several tabs:

» Method call recording [p. 74]

-73-

Configure method call recording options for the session. These settings affect CPU views and
memory views with allocation information.

CPU profiling [p. 75]
Configure options regarding CPU profiling. These settings affect CPU views only.

Java subsystems [p. 76]

Configure recording options for several Java EE related Java subsystems for the session.

Memory profiling [p. 77]

Configure options regarding memory profiling. These settings affect all memory views.

Thread profiling [p. 78]
Configure options regarding thread profiling. These settings affect all views in the thread section.

Miscellaneous [p. 78]

Configure miscellaneous options for profiling.

Other settings, which concern the presentation of profiling data are called view settings and are

accessible from the main toolbar L as well as from context sensitive menus in each view. View
settings are persistent as well and are saved automatically for each session.

B.4.4.2 Adjusting Method Call Recording Options

On this tab of the profiling settings dialog [p. 73] , you can adjust all options related to method call
recording. These settings influence the detail level of CPU profiling data and the profiling overhead.

The following options are available:

Enable method call recording

When you record CPU data or allocations, JProfiler collects information about the call tree. You
might want to record allocations without the overhead of recording the allocation call stacks: If you
don't need the allocation view [p. 144] in the heap walker, the allocation call tree [p. 124] and the
stack trace information in the monitor usage views [p. 204], you can switch off method call recording.
This will speed up profiling considerably and reduce memory usage.

Method call recording type

Select the method call recording type for CPU profiling as one of

Dynamic instrumentation

When dynamic instrumentation is enabled, JProfiler modifies filtered classes on the fly as they
are loaded by the JVM to include profiling hooks. Accuracy of non-timing related stack
information (like allocation information) is high, invocation counts are available and Java EE
payloads can be annotated in the call tree, but calls from Java core classes are not resolved.
The overhead and timing accuracy varies depending on what classes are instrumented.

Java core classes (j ava. *) cannot be profiled this way and are filtered automatically.
Sampling

When sampling is enabled, JProfiler inspects the call stacks of all threads periodically. Sampling
has extremely low overhead even without any filters. Accuracy of non-timing related stack
information (like allocation information) is low and invocation counts are not available. Only
methods that take longer than the sampling period or methods called frequently are captured
by sampling.

Sampling is ideally suited for use without any method call filters. To temporarily switch off all
filters, you can use the Di sabl e all filters for sanpling setting instead of deleting

-74 -

all filters in your configuration. In that way you can create a profiling settings template that ignores
your filter configuration and alternate between using filters and using no filters at all.

If sampling is enabled, the sampling frequency can be adjusted. The default value is 5 ms. A
lower sampling frequency incurs a slightly higher CPU overhead when profiling.

Note: allocations will be reported according to the call traces recorded by the sampling
procedure. This may lead to incorrect allocation spots.

Line numbers

By default, JProfiler does not resolve line numbers in call trees. If you enable show | i ne nunbers
for sanpling and dynanic i nstrunentation,line numbers will be recorded and shown.

If the aggregation level is set to "methods" and a method calls another method multiple times in
different lines of code, line humber resolution will show these invocations as separate method
nodes in the call tree [p. 172] and the allocation call tree [p. 124] . Backtraces in the hotspot views
will also show line numbers.

Note that a line number can only be shown if the call to a method originates in an unfiltered class.

B.4.4.3 Adjusting CPU Profiling Options

On this tab of the profiling settings dialog [p. 73], you can adjust all options related to CPU profiling.
These settings influence the detail level of CPU profiling data and the profiling overhead. They only
apply to the views in the CPU view section [p. 170] .

The following options are available:

Auto-tuning settings

Here, you can disable auto-tuning [p. 72] . Furthermore you can configure the criteria for determining
an overhead hot spot. A method is considered an overhead hot spot if both of the following conditions
are met:

« the total time of all its invocations exceeds a threshold in per mille of the entire total time in the
thread

* its average time is lower than an absolute threshold in microseconds

Time settings
Select whether you want times shown in the CPU view section [p. 170] to be measured in

« elapsed time

With elapsed time selected, the clock time difference between method entry and method exit
will be shown. Note that if the thread state selector [p. 170] is set to its standard setting (Runnable).
Waiting, blocking and Net IO thread states are not included in the displayed times.

* estimated CPU time

With estimated CPU time selected, the CPU time used between method entry and method exit
will be shown. On Windows and Mac OS the system supplies CPU times with a 10 ms resolution
which are used to calculate the estimated CPU times. On Linux and Solaris the VM does not
supply a CPU time and the estimated CPU times are roughly estimated by looking at the number
of runnable threads.

Settings for exceptional method run recording
Exceptional method run recording [p. 71] has the following configurable parameters:

-75-

Maximum number of separately recorded method runs

The maximum number of the slowest invocations that are shown separately in the call tree view
[p. 172] . Increasing this value can increase memory overhead and visual clutter in the call tree.

Time type for determining exceptional method runs

The time measurement that is used for finding the slowest method invocations. Note that this
setting is not linked to the thread state selector in the CPU views [p. 170] .

B.4.4.4 Java Subsystems

On this tab of the profiling settings dialog [p. 73], you can select how JProfiler should record Java EE
related Java subsystems.

The following options are available:

Record service calls

JProfiler instruments several Java EE service layers on the fly and records semantic data as well
as execution times for these service calls. The instrumentation is not implementation dependent
and works for all drivers or service providers. The service calls are annotated into the call tree view
[p. 172] and can be selected as hot spot types in the hot spot view [p. 177] .

The following service types can be enabled separately:

JDBC calls

JProfiler analyzes statements, prepared statements, callable statements as well as batches of
statements and measures calls into all JDBC methods of type execut e, execut eQuery,
execut eUpdat e and execut eBat ch.

The displayed data is always the executed SQL statement, without any parameter substitution.
JMS calls

Both synchronous and asynchronous messages are handled. For synchronous messages, the
receive and recei veNoWait methods of MessageConsuners are measured. For
asynchronous messages, the onMessage methods of Messageli st ener s or message driven
EJBs are measured.

The displayed data is by default the message destination as returned by
message. get JIMsSDest i nat i on() . If you would like to differentiate messages based on the
content of the message you can write a custom JMSResol ver and register it with
Control |l er.regi sterJVMSResol ver. Please see the AP| documentation [p. ?] for more
information.

JNDI calls

All calls in j avax. nam ng. Cont ext and j avax. nam ng. di rectory. Di r Cont ext that
return data are measured.

Based on whether a call is a name lookup or a search call, the displayed data will be prefixed
with [NAME] or [SEARCH] and contains information about the name or search expression in
the parameters.

Service calls are grouped by their display data, i.e. two equal select statements at the same call
stack are held as one node in the internal data model. For each node, JProfiler keeps track of the
invocation count and total execution times for each thread status. To avoid an overload of the
system, there's a maximum number of recorded service calls per call stack. If the maximum

-76-

number is exceeded, the oldest call is merged into an "[earlier calls]" node. By default, this maximum
value is set to 20, if you require more detail you can increase the value in the text field as needed.

Java EE awareness

If Split call tree for each request URL is enabled, JProfiler will analyze the URLs that occur in
calls to servlets and JSPs. For each URL, a new node is created in the call tree [p. 172]. URLSs can
also be selected as a hot spot type in the hot spot view [p. 177] . In that way, you can differentiate
the performance issues of separate pages or requests.

By default, only the URL without the query parameters is used for the above splitting process. In
order to retain selected parameters in the call tree, you can enter them in the text field labeled
retained request parameters. For example, if you want to split the call tree for each different
value of the parameters "action" and "level", enter acti on, | evel into the text field. If you would
like to customize the splitting process (for example, if the session id is incorporated into the URL)
you can write a custom HITPRequest Resol ver and register it with
Control |l er.regi ster HTTPRequest Resol ver . Please see the APl documentation [p. ?] for
more information.

Request URLSs that do not lead to an unfiltered method in the call tree are not displayed by default.
If you would like to display all requests, please check the checkbox labeled Show request URLSs
that are outside the call tree.

JProfiler can detect the following Java EE component types:
[serviets
JSPs

M eiBs

The corresponding methods have a separate icon in the call tree. For JSPs, the name of the JSP
source file is displayed instead of the generated class and for EJBs the name of the interface is
displayed instead of the generated stub or proxy classes. In the "method" and the "class" aggregation
levels, the real class names are displayed in square brackets, too.

Based on this component information, JProfiler offers the Java EE components aggregation
level in all views with an aggregation level selector. If you would like to disable Java EE component
detection, you can deselect the checkbox labeled Detect Java EE components.

B.4.4.5 Memory Profiling Options

On this tab of the profiling settings dialog [p. 73], you can adjust all options related to memory profiling.
These settings influence the detail level of memory profiling data and the profiling overhead.

The following options are available:

Recording type

The information depth of the allocation call tree [p. 124] and the allocation hot spots view [p. 129] is
governed by this setting.

e Live objects
By default, only live objects can be displayed by the allocation views. Class-resolution is enabled.
e Live and GCed objects without class resolution

Live and garbage collected objects can be displayed by the allocation views, depending on the
selection in the allocation options dialog [p. 135] . Class-resolution is disabled, i.e. class selection
[p. 135] in the allocation options dialog [p. 135] will not work in this setting, only the cumulated

-77 -

allocations of all classes and array types can be displayed. This setting consumes more memory
than the first setting and adds a considerable performance overhead.

Live and GCed objects

Live and garbage collected objects can be displayed by the allocation views, depending on the
selection in the allocation options dialog [p. 135] . Class-resolution is enabled. This setting
consumes more memory than the other settings and adds adds a considerable performance
overhead.

* Allocation times

Select the Record obj ect allocation tinme check box if you would like to be able to

use the time view in the heap walker [p. 165]

sort objects by allocation time in the reference graph [p. 148] and the data view [p. 161] of the
heap walker.

See allocation times for the current objects in the reference graph [p. 148] and the data view [p.
161] of the heap walker.

This setting leads to an increased memory consumption when recording objects.

B.4.4.6 Thread Profiling Options

On this tab of the profiling settings dialog [p. 73], you can adjust all options related to thread profiling.
These settings influence the detail level of thread profiling data and the profiling overhead.

The following options are available:

* Monitors

if you are not interested in monitor contention events, you can switch data collection off by
deselecting the Enabl e noni t or recor di ng check box. This lowers the memory consumption
of the profiled application. If monitor contention views are enabled, the following settings govern
the level of detail for the monitor contention views:

Record java.util.concurrent events

JProfiler can insert itself into the locking facility in the java.util.concurrent package which does
not use monitors of objects but a different natively implemented mechanism. If you do not wish
to see this information, you can deselect this check box.

e Thread filter

By default, JProfiler does not show system threads where no user code can ever run. If you would
like to see all threads, please select the Show syst em t hr eads check box.

B.4.4.7 Miscellaneous Options

On this tab of the profiling settings dialog [p. 73], you can adjust uncategorized options for profiling.

The following options are available:

* VM life cycle control
If you select the Keep VM al i ve check box, JProfiler keeps the VM alive until the JProfiler GUI
disconnects. This option allows you to profile code sections which are close to a forced termination
of the virtual machine.

-78-

Note: with the classic VM (e.g. IBM JVMS), this option installs a security manager which intercepts
your application's calls to Syst em exit () and executes them after JProfiler's GUI front end
disconnects. This can be a problem when you profile an application server which installs its own
security manager. If you use a classic VM and get security related exceptions when profiling your
applications, try unchecking this option.

Dynamic views

Many views in JProfiler update their data automatically. There are several options for configuring
the update behavior of those dynamic views:

e Start with all views frozen

To disable dynamic updates in JProfiler's views, you can check Start with all dynamic views
frozen. Click on the unfreeze button in the toolbar if you want to start dynamic data to be

displayed or fetch data manually with the &4 fetch data button which is visible only in the frozen
state.

e Transmission periods

Based on the varying degree of computing expenses required for the different views, the
transmission periods for the dynamic views have been split into two separate settings:

e CPU views

This setting influences the update interval of the dynamic views in the CPU view section [p.
170] .

e Tables and graphs

This setting influences the update interval of the

» all objects view [p. 119]
» recorded objects view [p. 121]

» dynamic views in the thread section [p. 192]

* VM telemetry view section [p. 207]

Note: The update frequency of the all objects view [p. 119] is adjusted automatically according
to the total number of objects on the heap.

To update any dynamic view in between two regular updates, you can click on the Ed refresh
icon in the status bar.

Console Settings

JProfiler displays a console for locally started programs. This includes local sessions, applets, web
start applications and remote sessions with a configured start command.

JProfiler offers two types of consoles:

« Java Console

This is a cross-platform console, that supports text input, sending CTRL-C to the profiled
application, text selection and clipboard operations. For the Java console you can set the following
options:

» Buffer size
The number of most recent lines of output that are held by the console. Default is 1000.

-79-

 Window size

The initial size (width x height) of the console in characters. Note that the console does not
wrap text. Default is 80 x 25.

This console integrates with JProfiler's Window menu.
« Native Console

On Microsoft Windows, you also have the option to use the native console. This console does
not integrate with JProfiler's Window menu.

* Profiling agent debug parameters

Here you can enter debugging parameters [p. 93] that can be passed to the profiling agent on the
command line. This text box is not visible for remote sessions, since you have to add those
parameters to the start script yourself in that case.

B.4.4.8 Profiling Settings Template Dialog

Profiling settings templates can be saved on the profiling settings [p. 73] section of the session settings
dialog [p. 64].

A profiling template contains all profiling settings that can be configured in the profiling settings dialog.
When saving a profiling settings template, you have to assign a unique name to it. The profiling
settings template dialog allows you to reorder, rename and remove existing profiling settings templates.

The profiling setting template dialog can also be invoked from the session defaults [p. 105] tab of the
general settings dialog [p. 104] where you can change the default profiling settings template used for
new sessions.

B.4.5 Trigger settings

B.4.5.1 Trigger Settings

In the trigger settings section of the session settings dialog [p. 64] you can configure triggers that
allow you to respond to certain events in the JVM with a list of actions. For further background
information, please see the help topic on triggers and offline profiling [p. 26] .

The trigger settings section is grouped into several tabs:

e Triggers

Here, you define the list of triggers for your session. By default, no triggers are defined. To add
new triggers, click on the & add button to display the trigger wizard [p. 81] . The trigger wizard is
also used to El edit existing triggers.

Some triggers are only required occasionally, especially when the set of actions incurs a

considerable overhead, such as saving snapshots. JProfiler allows you to E disable and enable
triggers so you do not lose their configuration for the next time you need them. The corresponding
actions are also available from the context menu.

Note that you can select multiple triggers to quickly disable, enable or delete many triggers.

Trigger configurations can be saved to trigger sets [p. 87] with the I save button, with the open
button you can add a trigger set to the current list of triggers.

On the session defaults [p. 105] tab of the general settings dialog [p. 104] you can change the default
trigger set used for new sessions. By default, no triggers are added to a new session.

e Output options

-80 -

The following actions print information when they are executed:

* Print message
¢ Print method invocation

On this tab you define where this output should be printed. The available options are:

¢ Print to stdout
¢ Print to stderr
* Print to file

For this option you have to enter a file name. The file will be saved relative to the working
directory of the profiled JVM on the machine where the profiled JVM is running.

B.4.5.2 Trigger Wizard

The trigger wizard is shown when you add a new trigger or when you edit an existing trigger in the
trigger section [p. 80] of the session settings [p. 64] .

The trigger wizard is also shown, when adding or editing triggers in the trigger settings [p. 80] or when
adding a trigger from a view that displays single methods [p. 87] .

The first step of the trigger wizard lets you choose the event type from the list of available trigger
event types [p. 81].

The following steps in the wizard depend on this selection. Note that you can click with the mouse
on the index to quickly jump to a different step. This is especially useful when editing triggers.

After the event-specific steps in the wizard, you can configure the actions that should take place when
the trigger event occurs. JProfiler offers a fixed set of available actions [p. 84] . The actions are
configured directly in the list, the options associated with an action are shown when the action is
selected.

Actions are executed when the event occurs. For events that have a duration, such as the method

invocation event or the threshold events, you can use the E2 "wait for the event to finish" action to
separate actions that should be executed when the events starts from actions that should be executed
when the event finishes.

In the list of configured triggers [p. 80], each trigger is represented by the trigger type and a short
summary of its most important parameters. If you have multiple triggers of the same type, this might
not be distinctive enough. On the "Description" step, you can configure a name that is displayed in
the list of triggers instead of the parameter summary.

You can enable and disable groups of triggers [p. 87] in a live session. To group triggers for this
feature, the "Group ID" step allows you to optionally assign a group ID to each trigger.

B.4.5.3 Trigger Event Types
The following trigger types are available in the trigger wizard [p. 81] for configuring triggers [p. 80] :

« Method invocation

Symbol: &

This event occurs when a method is called. Several methods can be configured for the same action
sequence. Besides the standard actions, there are several special actions for this trigger type.

-81-

The second step of the trigger wizard will then be the "Specify methods" step. Here you can edit
the list of methods for which this trigger will be activated. There are several ways to enter new
methods:

e Search in configured classpath

A class chooser will be shown that shows all classes in the classpath configured in the application
settings [p. 65] . Finally you have to select a method from the selected class.

e Search in other JAR or class files

First, you can select a JAR or class file. If the selection is a JRE file, you then have to select a
class in a class chooser. After the selection you will be asked whether to expand the classpath
with the current selection. For remote sessions, the classpath is often not configured, so this is
a shortcut to make your selection permanent. Finally you have to select a method from the
selected class.

e Search in profiled classes

If the session is being profiled, a class chooser is displayed that shows all classes in the profiled
JVM. There may be classes in the classpath that have not been loaded. Those classes will not
be shown in the class chooser. Finally you have to select a method from the selected class.

« Enter manually (advanced)

This option displays a dialog that allows you to enter class name, method name and method
signature in JNI format. The JNI format of the method signature is explained in the javadoc of
comjprofiler.api.agent.interceptor.|nterceptionMethod.

The context menu for the list of methods offers the option to edit existing entries.

In addition, all views with call trees [p. 87] offer the possibility to select methods for a method trigger
in the context menu.

By default, the method trigger event is not fired for recursive calls. This means that if a method M
is being called and later on in the call stack method M is called again, the event is only fired for
the first invocation of method M. If you deselect the check box | gnore recursive call s, the
event will be fired for all invocations of a method.

Heap usage threshold

Symbol: [
Requirements: Java 1.4+

This event occurs when the heap usage exceeds a certain threshold in percent of the maximum
heap size for a minimum period of time.

The second step of the trigger wizard will then be the "Threshold" step. Here you can configure
the

e Threshold

The trigger will be activated each time when the used heap size exceed the configured percentage
of the maximum heap size.

« Activation time

To avoid spurious trigger events, the activation time sets a minimum amount of time during
which the threshold must be exceeded. Only after the activation time has passed will the trigger
be activated.

+ Deactivation time

-82-

Similar to the activation time, the trigger will only be deactivated after heap usage falls below
the threshold for a minimum amount of time. By default, the deactivation time is the same as
the activation time, however, you can configure a different time for it. Activation and deactivation
times determine the sensitivity of the trigger to the threshold value.

* Inhibition time

To avoid that too many trigger events are fired, you can set an inhibition time. After the trigger
has been deactivated, the trigger will not be activated again for the duration of the inhibition
time.

CPU load threshold
Symbol: ;

Requirements: Java 1.5+

This event occurs when the CPU load exceeds a certain threshold in percent for a minimum period
of time.

The second step of the trigger wizard will then be the "Threshold" step which is explained above
for the "Heap usage threshold" trigger with the only difference that the threshold value is the CPU
load in percent.

Out of memory exception

Symbol:

Requirements: Java 1.6+

This event occurs when an OutOfMemoryException is thrown. You can only save an HPROF
snapshot in this case since the trigger works by adding -XX:+HeapDumpOnOutOfMemoryError to
the VM options. Also, this trigger only works with a Java 6+ JVM. For 1.5.0_07+ and 1.4.2_12+,

this VM option is also supported, however, it cannot be added by the profiling agent, so you have
to add it manually to the VM options of the profiled application.

Timer

Symbol: 0
With a timer trigger, you can periodically execute a certain set of actions, such as saving a snapshot.

The second step of the trigger wizard will then be the "Timer" step where you can configure the
following properties of the timer:

e Timer type

A timer can either periodically either and unlimited number of times of a limited number of times.
e Interval

The interval defines the period of time between two subsequent timer invocations.
» Offset

With the offset, you can specify how much time should pass between the start of the JVM and

the first invocation of the timer.
JVM startup

Symbol: &

With a JVM startup trigger, you can execute a certain set of actions right after the JVM is started
for profiling. The actual execution is performed right after the trigger subsystem has been initialized
in the profiling agent.

-83-

http://java.sun.com/javase/6/webnotes/trouble/TSG-VM/html/clopts.html

+ JVM exit
Symbol: =

With a JVM exit trigger, you can execute a certain set of actions right before the JVM is shut down.
This is implemented with a standard shutdown hook, so code in other shutdown hooks may be
executed after the associated actions.

B.4.5.4 Trigger Action Types

The following trigger action types are available in the trigger wizard [p. 81] for configuring triggers [p.
80] :

e Start recording

Symbol; =

Starts recording any of

» CPU data [p. 170]

With the "Reset" check box, you can choose whether the previously recorded CPU data should
be cleared or not.

» Allocation data [p. 118]

With the "Reset" check box, you can choose whether the previously recorded allocation data
should be cleared or not.

e Thread data [p. 192]
* VM telemetry data [p. 207]
» Method statistics [p. 186]

With the "Reset" check boxes for CPU data and allocation data, you can choose whether the
previously recorded data should be cleared or not.

e Stop recording

Symbol: H

Stops recording any of

 CPU data [p. 170]

» Allocation data [p. 118]

e Thread data [p. 192]

* VM telemetry data [p. 207]
* Method statistics [p. 186]

e Start monitor recording

Symbol:

Starts recording monitor data. The monitor views [p. 199] that show historical data receive new data
when this action is executed. Please note that monitor recording adds a memory overhead that
grows linearly in time. You should execute the "stop monitor recording" action at some point.

In the configuration, you can define blocking and waiting thresholds for monitor recording. These
settings are the same as those in the monitor history view settings dialog [p. 205] .

-84-

e Stop monitor recording

Symbol: A

Stops recording monitor data.
« Start call tracer

Symbol: B

Starts recording call traces. The call tracer view [p. 189] will receive new data once the "stop call
tracer" action is executed. Please note that call traces use a lot of memory. You should execute
the "stop call tracer" action after a short time.

In the configuration, you can define a cap on the number of recorded call traces and determine if
calls into filtered classes should be traced as well. These settings are the same as those in the
call tracer view settings dialog [p. 190] .

In addition, you can specify if previously recorded call traces should be reset or not. If you do not
clear previously recorded call traces, you can build up call traces over several trigger events.

e Stop call tracer

Symbol: 22

Stops recording call traces. The call tracer view [p. 189] will be updated with the recorded data as
soon as this action is executed.

» Trigger heap dump
Symbol:

With this action you can trigger a heap dump as in the heap walker [p. 137] . Accordingly, you can
select whether to

e Select recorded objects only

Note that if you select this option and have not recorded any allocations, the heap walker will
show the empty object set.

« Remove unreferenced and weakly referenced objects

This is effectively like a full GC before taking the snapshots, just that the GC is performed in the
internal data structures of the profiling agent.

+ Calculate retained sizes

To reduce the memory overhead and the time for heap snapshot processing you can deselect
this option. Retained sizes can only be calculated if the "Remove unreferenced and weakly
referenced objects" option is selected.

e Record primitive data
This has no effect with Java 1.5 and JVMTI where primitive data cannot be recorded. Java

1.2-1.4 and Java 1.6+ fully support this option.
» Trigger thread dump
Symbol:

With this action you can trigger a thread dump as in the thread dumps view [p. 198] . Please note
that frequently taking thread dumps will cause a linear growth in memory overhead.

e Save snhapshot

Symbol: =

-85 -

With this action you can save a JProfiler snapshot [p. 101] of all profiling data to disk.

In addition to the name of the snapshot file you can specify whether a number should be appended
to the file name to prevent old snapshot files from being overwritten. Note that the path is relative
to the working directory of the profiled JVM and that the snapshot is saved on the remote machine
if you profile remotely.

Create an HPROF heap dump
Symbol: k=l
Requirements: Java 1.6+

With this action you can save an HPROF heap snapshot [p. 101] of all profiling data to disk. For the
"Out of memory exception" [p. 81] event type, this is the only supported action.

In addition to the name of the snapshot file you can specify whether a number should be appended
to the file name to prevent old snapshot files from being overwritten. Note that the path is relative
to the working directory of the profiled JVM and that the snapshot is saved on the remote machine
if you profile remotely.

HPROF heap dumps also offer the option to only save referenced objects.
Wait for the event to finish

Symbol; @]

For event types [p. 81] that have a duration, such as the method invocation event or the threshold
events, you can use this action to execute some actions not at the start of the event but rather
after the event is finished.

Override thread status for current method
Symbol:

This action is only available for the method invocation [p. 81] event type and allows you to change
the thread status [p. 193] for the duration of the methods that are associated the the trigger. The
thread status is configurable.

Print method invocation

Symbol; L4

This action is only available for the method invocation [p. 81] event type and allows you print details
about the current method invocation including parameters and return value to the output stream
configured in the trigger output options [p. 80] .

Invoke interceptor
Symbol:

This action is only available for the method invocation [p. 81] event type and allows you to invoke
an interceptor when the methods associated the the trigger are invoked. Interceptors can be
developed with the JProfiler APl and can also be added with VM parameters. Please see the api

directory for documentation and samples. The advantage of adding the interceptor with a trigger
is that you do not have to specify the methods and signatures in the interceptor class.

You can enter the interceptor class manually or use the [...] button to scan the class path configured
in the application settings [p. 65] for all classes extending
comjprofiler.api.agent.interceptor.|nterceptor.

Add bookmark

Symbol:

- 86 -

With this action you can add a boookmark [p. 114] to the time-resolved views. You have to enter a
description for the bookmark.

e Sleep
Symbol: &

With this action, you can sleep a specified amount of time until the next action in the list is executed.
Please note that this does not block the current thread in the JVM. For example, you can use this
action to start CPU recording, record 10 minutes, stop CPU recording and save a snapshot.

e Print message

Symbol; Li

With his action you can print an arbitrary message to the output stream configured in the trigger
output options [p. 80] .

B.4.5.5 Trigger Sets

Trigger sets can be saved on the trigger settings [p. 80] section of the session settings dialog [p. 64]

A trigger set contains all triggers that are currently defined for the session being edited. When saving
a trigger set, you have to assign a unique name to it. The trigger set dialog allows you to reorder,
rename and remove existing trigger sets.

The trigger set dialog can also be invoked from the session defaults [p. 105] tab of the general settings
dialog [p. 104] where you can change the default trigger set that is added to new sessions.

B.4.5.6 Method Selection For Triggers

Several views in JProfiler display call trees and back traces, such as the call tree [p. 172], the hot spot
view [p. 177], the allocation call tree [p. 124] and the allocation hot spot view [p. 129] .

In all these views, the context menu shows an Il add method trigger action if the currently selected
node is a method. That action displays this dialog where you can choose whether to add the method
interception to an existing method trigger or whether to create a new method trigger.

If you select "Add to existing method trigger", the list below which displays all existing method triggers
is enabled and you have to choose one of them. The select method is added to the selected trigger
and the trigger wizard [p. 81] is opened at the "Actions" step, so you can review or modify the existing
list of actions.

If you select "Create new method trigger”, a new method trigger is created and the trigger wizard [p.
81] is shown at the action step.

B.4.5.7 Enabling And Disabling Triggers
By default, triggers are active when the JVM is started for profiling. There are two ways to disable
triggers at startup:

» disable individually on startup

In the trigger configuration [p. 80] you can select single triggers and disable them. Those triggers
will be shown in gray.

» disable all on startup

In the session startup dialog [p. 88] there is a check box Enabl e triggers on startup.If
you deselect this check box, all triggers will be disabled when the JVM is started for profiling.

-87-

During a live session, you can enable or disable all triggers by choosing Profiling->(Enable|Disable)
triggers from JProfiler's main menu. Bookmarks [p. 114] will be added when triggers are enabled or
disabled manually.

The trigger recording state is shown in the status bar with a I flag icon which is shown in gray when
triggers are not enabled. Clicking on the flag icon will toggle trigger recording.

Sometimes, you need to toggle trigger recording for groups of triggers at the same time. This is
possible by assigning the same group ID [p. 81] to the triggers of interest and invoking Profiling->Enable
triggers groups from JProfiler's main menu.

A dialog will be shown where you can select one or more group IDs. Furthermore, there are radio
buttons to control whether the selected trigger groups should be enabled or disabled.

Enabling or disabling trigger groups overrides the global trigger recording status as well as the initial
disabling of individual triggers.

B.4.6 Open Session Dialog
The open session dialog serves two functions:

« To open profiling sessions [p. 64] . Double click on an existing session or choose a session and
click [Open] to start a profiling session.

e To edit [p.65], copy and delete existing sessions.

The list of available session configurations displays the session name which can be changed when
editing [p. 65] a session. In addition, the associated icon to the left of the session name show whether

the session is £l a local session, [l a remote session, (2] an applet session or ¥ a Java Web Start
session

The facility to open sessions is also embedded in JProfiler's start center [p. 41] .

B.4.7 Session Startup Dialog

Before a session is started, the session startup dialog is displayed. This dialog displays short summaries
for the

 Filter settings [p. 69]
» Profiling settings [p. 73]

» Trigger settings [p. 80]

of the profiled session as well as [Edit] buttons that lead to the corresponding sections of the session
settings dialog [p. 64] .
When profiling, there is a general trade-off between profiling overhead and information depth. Most

likely your personal requirements will change from profiling run to profiling run, so these settings are
displayed every time before your application is started.

For IDE integration users, this is the dialog where session settings can be accessed and modified.
Session settings are persistent and are associated with the project name in the IDE.

In the St ar t up section dialog you can choose whether recording of CPU or allocation data should
be started immediately. For many profiling use cases the startup phase of an application is not of
interest. For large applications servers, you can save a lot of memory and speed up the startup phase
by not recording allocations from the beginning.

e Record CPU data on startup
Both the invocations view [p. 172] and the hot spots view [p. 177] will display data immediately.

- 88 -

* Record allocations on startup
The recorded objects view [p. 121] will display data immediately.

* Enable triggers on startup

By default, this option is selected. If you deselect this check box, triggers will not be enabled when
the JVM is started for profiling. You can enable triggers manually [p. 87] later on.

The performance indicators are set according to the selected profiling settings [p. 73] . Please note
that these values are only approximate and the the filter settings influence overhead as well.

When you click on [OK], the session will be started.

B.4.8 Starting Remote Sessions

In most cases, the integration of JProfiler with an application server is handled by the application
server integration wizards [p. 42] . If no GUI is available on the remote machine you can use the
j pi nt egr at e executable in the bi n directory for a console integration wizard.

To start your application or application server in such a way that you can connect to it with a remote
session from JProfiler's GUI front end, the following steps are required. They are different for the old
profiling interface JVMPI and the new profiling interface JVMTI. For that latter, the required modifications
are considerably simpler.

« Java>=1.5.0 (JVMTI)
Add a VM parameter to your startup command that tells the VM to load the profiling agent:

-agentpath:{Path to jprofilerti library}

where{Path to jprofilerti |ibrary} dependsonthe operating system and the architecture
of the JVM (not the architecture of the operating system):

Windows, 32-bit {JProfiler install
di rect ory}\ bi n\wi ndows\ j profilerti.dll

Windows, 64-bit {JProfiler install
di rect ory}\ bi "\w ndows-x64\j profilerti.d |

Linux x86, 32-bit {JProfiler install
directory}/bin/linux-x86/libjprofilerti.so

Linux x86, 64-bit {JProfiler install
directory}/bin/linux-x64/1ibjprofilerti.so

Linux PPC, 32-bit {JProfiler install
directory}/bin/linux-ppc/libjprofilerti.so

Linux PPC64, 64-bit {JProfiler install
drectory}/bin/linux-ppc6d/ ik profilerti.so

Solaris SPARC, 32-bit {JProfiler install
drectory}/binsdaris-sparc/liprofil erti.so

Solaris SPARC, 64-bit {JProfiler install
drectoyl/bnsdaisspacdlibprdilerti.so

-89 -

Solaris x86, 32-bit {JProfiler install
drectoy}/bin/sdaris-x84/libprofilerti.so

Solaris x86, 64-bit {JProfiler install
directory}/bin/sdaris-x64/libjprofilerti.so

Mac OS, 32 and 64-bit {JProfiler install
directory}/bin/nacos/libjprofilerti.jnilib

HP-UX PA_RISC, 32-bit {JProfiler install
drectory}/binhpux-parisc/lily profilerti.sl

HP-UX PA_RISC, 64-bit {JProfiler install
d rectory}/ b/ hpux-periscd/ lilg profil erti. sl

HP-UX |A64, 32-bit {JProfiler install
directory}/bi n/ hpux-i abAn/libjprofilerti.so

HP-UX IA64, 64-bit {JProfiler install
directory}/bi n/ hpux-i abAwlibjprofilerti.so

AlX, 32-bit {JProfiler install
directory}/bin/ai x-ppc/libjprofilerti.so

AlX, 64-bit {JProfiler install
directory}/bin/ai x-ppc6d/libjprofilerti.so

FreeBSD x86, 32-bit {JProfiler install
drectory}/bin/freelsd-x86/ i profilerti.so

FreeBSD x86, 64-bit {JProfiler install
directory}/bin/frecosdx64/1ibjprofilerti.so

Also, you might need to add other JVM-specific options found in the remote session invocation
table [p.93].

. Java <= 1.4.2 (JVMPI)

1 Adjust your startup command
Add the following command line parameters to your startup command:

« A VM parameter that tells the VM to load the profiling agent:
-Xrunj profiler
« A VM parameter that adds JProfiler-specific classes to the boot classpath:

* Windows

- Xboot cl asspath/a: {JProfiler install directory}\bin\agent.jar
 all other supported platforms

- Xboot cl asspath/a: {JProfiler install directory}/bin/agent.jar

» other JVM-specific options found in the _remote session invocation table [p. 93]

-90 -

2 Adjust the native library path

The native library path is an environment variable whose name depends on on the operating
system and the architecture of the JVM (not the architecture of the operating system).

Windows, 32-bit Add {JProfiler install
di rect or y}\ bi n\ wi ndows to the
environment variable PATH.

Windows, 64-bit Add {JProfiler install
di rectory}\ bi n\wi ndows-x64 to
the environment variable PATH.

Linux x86, 32-bit Add {JProfiler install

di rectory}/bin/linux-x86 tothe
environment variable

LD LI BRARY_PATH.

Linux x86, 64-bit Add {JProfiler install

di rectory}/bin/linux-x64tothe
environment variable

LD_LI BRARY_PATH.

Linux PPC, 32-bit Add {JProfiler install

di rectory}/bin/linux-ppc tothe
environment variable

LD LI BRARY_PATH.

Linux PPC64, 64-bit Add {JProfiler install

di rectory}/bin/linux-ppc64to
the environment variable

LD LI BRARY_PATH.

Solaris SPARC, 32-bit Add {JProfiler install
directory}/bin/solaris-sparc
to the environment variable

LD LI BRARY_PATH.

Solaris SPARC, 64-bit Add {JProfiler install
directory}/bin/sol aris-sparcv9
to the environment variable

LD LI BRARY_PATH.

Solaris x86, 32-bit Add {JProfiler install
directory}/bin/solaris-x86to
the environment variable

LD LI BRARY_PATH.

Solaris x86, 64-hit Add {JProfiler install
directory}/bin/solaris-x64to
the environment variable

LD LI BRARY_PATH.

-91-

Mac OS, 32 and 64-bit

{JProfiler install

di rectory}/ bi n/ macos to the
environment variable

DYLD_LI BRARY_PATH.

HP-UX PA_RISC, 32-bit

Add {JProfiler install
di rect ory}/ bi n/ hpux- pari sc to
the environment variable SHLI B_PATH.

HP-UX PA_RISC, 64-bit

Add {JProfiler install

di rect ory}/ bi n/ hpux- pari sc64
to the environment variable

SHLI B_PATH.

HP-UX 1A64, 32-bit

Add {JProfiler install
di rectory}/ bi n/ hpux-i aé4ntothe
environment variable SHLI B_PATH.

HP-UX 1A64, 64-bit

Add {JProfiler install
di rectory}/ bi n/ hpux-i aé4wtothe
environment variable SHLI B_PATH.

AlIX, 32-bit Add {JProfiler install
di rectory}/ bin/aix-ppc to the
environment variable LI BPATH.
AlX, 64-bit {JProfiler install

di rectory}/ bin/ai x-ppc64 to the
environment variable L1 BPATH.

FreeBSD x86, 32-hit

Add {JProfiler install
directory}/bin/freebsd-x86 to
the environment variable

LD LI BRARY_PATH.

FreeBSD x86, 64-bit

Add {JProfiler install

di rectory}/bin/freebsd-x64 to
the environment variable

LD_LI BRARY_PATH.

The remote session invocation table [p. 93] shows the complete commands for all supported JVMs.

Please note that the profiling interfaces JVMPI and JVMTI only run with the standard garbage collection.
If you have VM parameters on your command line that change the garbage collector type such as

* -Xincgc

e -XX: +UseParall el GC

e - XX: +UseConcMar kSweepGC
e - XX +UsePar NewGC

-92-

please make sure to remove them. It might be a good idea to remove all - XX options if you have
problems with profiling.

If you start your application from an ant build file, you can use the ant task [p. 227] to easily profile your
application.

B.4.9 Remote Session Invocation Table

Please look at the help page on starting remote sessions [p. 89] for a complete sequence of steps
that need to be taken for remote profiling. Below you find the condensed instructions on how to modify
your startup command for a remote profiling session. The table shows all supported JVM vendors
and versions. Square brackets like [your path to agent.jar] are to be replaced according to
the textual description, or they contain platform dependent options, like [sol ari s: -native],
which means that on Solaris, you should add - nat i ve but nothing on other platforms.

${ PARAM is to be replaced by the parameters you would like to pass to the profiling agent. The
following parameters are available:

e port=nnnnn chooses the port on which the agent listens for remote connections. Be sure to use
the same value in JProfiler's GUI front end.

* nowait tells the profiling agent to let the JVM start up immediately. Usually, the profiled JVM will
wait for a connection from the JProfiler GUI before starting up. For 1.5 JVMs or earlier, the
parameters id has to be supplied as well. Optionally, you can also supply the config parameter
in that case.

« offline enables the offline profiling [p. 225] mode. You cannot connect with the GUI front end when
using the offline profiling mode. The parameters id has to be supplied as well. Optionally, you can
also supply the config parameter.

e id=nnnnn chooses the session used with the offline or nowait parameters. This is only required
for 1.5 JVMs or earlier.

« config=[path to JProfiler config file] supplies the path to JProfiler's configuration file. This
parameter is only relevant for offline profiling [p. 225] and profiling with the nowait parameter (in
the latter case only if the profiled JVM has a version of 1.5 or earlier). If config is not specified for
those cases, the profiling agent will attempt to load the config file from its standard location. Reading
the config file is necessary to retrieve profiling settings that have to be known at startup for the
session that was selected with the id parameter.

${ LI BRARY} (JVMTI only) is to be replaced by the full path to the native JProfiler library [p. 89].

Multiple parameters are separated by commas such as in

"offline,id=172,config=~/.jprofiler6/config.xml".

In addition to the standard parameters above, there are the following trouble-shooting and debugging
parameters:

» verbose-instr prints the names of all instrumented classes to stderr. This is a debugging parameter.

* jnilnterception enables the detection of object allocations via JNI calls. This parameter is only
relevant for Java 1.5.0_00, 1.5.0_01 and 1.5.0_02. This feature is enabled by default for Java
1.5.0_03 and higher. Due to a bug in Java 1.5.0_02 and lower, it is disabled when profiling with
those releases. Please make sure not to use - Xcheck: j ni when you specify this parameter
for Java 1.5.0_02 and lower.

« stack=nnnnn sets the maximum stack size for dynamic instrumentation. Only change this parameter
when JProfiler emits corresponding error messages. The default value is 10000.

-03 -

« samplingstack=nnnnn sets the maximum stack size for sampling. Only change this parameter
when JProfiler emits corresponding error messages. The default value is 200.

Vendor: Sun Microsystems Inc.
Version 1.2.2

» default mode:
java -Xrunjprofiler:${PARAM [solaris: -native]
- Dj ava. conpi | er=none - Xboot cl asspath/a:[path to
agent.jar] [your JVM paraneters] -classpath [class path]
[mai n cl ass] [paraneters]

Version 1.3.0
» default mode:
java -Xrunjprofiler: ${PARAM [sol aris: -Xboundthreads]
- Xboot cl asspath/a:[path to agent.jar] [your JVM
paranmeters] -classpath [class path] [main class]
[par anet er s]

Version 1.3.1

Unsupported releases with known problems: 1.3.1, 1.3.1_01

* interpreted mode:
java -Xint -Xrunjprofiler:${PARAM [solaris:
- Xboundt hreads] - Xbootcl asspath/a:[path to agent.jar]
[your JVM paraneters] -classpath [class path] [rmain
cl ass] [paraneters]

* hotspot mode:
java -Xrunjprofiler: ${PARAM [sol aris: -Xboundthreads]
- Xboot cl asspath/a:[path to agent.jar] [your JVM
paranmeters] -classpath [class path] [main class]
[par anet er s]

Version 1.4.0

Unsupported releases with known problems: 1.4.0-beta, 1.4.0-beta2, 1.4.0-betal
1.4.0-rc, 1.4.0
* hotspot mode:
java -Xrunjprofiler:${PARAM - Xbootcl asspath/a:[path
to agent.jar] [your JVM paraneters] -classpath [class
path] [rmain class] [paraneters]
* interpreted mode:
java -Xint -Xrunjprofiler:${ PARAM
- Xboot cl asspath/a:[path to agent.jar] [your JVM
par amet ers] -classpath [class path] [main class]
[par anet er s]

Version 1.4.1
* hotspot mode:

-94-

java -Xrunjprofiler: ${PARAM - Xboot cl asspat h/ a: [path
to agent.jar] [your JVM paraneters] -classpath [class
path] [main class] [paraneters]

* interpreted mode:
java -Xint -Xrunjprofiler:${ PARAM
- Xboot cl asspath/a:[path to agent.jar] [your JVM
paraneters] -classpath [class path] [main class]
[par anet er s]

Version 1.4.2
see version 1.4.1

Version 1.5.0

* hotspot mode:
java -agent pat h: ${ LI BRARY} =${ PARAM} [your JVM
paranmeters] -classpath [class path] [main class]
[par anet er s]

* interpreted mode:
java - Xi nt -agentpath: ${ LI BRARY} =${ PARAM} [your JVM
paranmeters] -classpath [class path] [main class]
[par anet er s]

* hotspot (JVMPI) mode:
java - Xshare: of f -Xrunjprofiler: ${ PARAM
- Xboot cl asspath/a:[path to agent.jar] [your JVM
parameters] -classpath [class path] [main class]
[par anet er s]

Note: deprecated, default interface JVMTI is preferred

* interpreted (JVMPI) mode:
java -Xint -Xshare:off -Xrunjprofiler: ${ PARAM
- Xboot cl asspath/a:[path to agent.jar] [your JVM
paraneters] -classpath [class path] [mmin class]
[par anet er s]

Note: deprecated, default interface JVMTI is preferred

Version 1.6.0

* hotspot mode:
java -agent pat h: ${ LI BRARY} =${ PARAM} [your JVM
paraneters] -classpath [class path] [main class]
[par anet er s]

* interpreted mode:
java -Xint -agentpath: ${ LI BRARY} =${ PARAM} [your JVM
paraneters] -classpath [class path] [mmin class]
[par anet er s]

Version 1.7.0
see version 1.6.0

-05 -

Vendor: IBM Corporation
Version 1.3.0

* interpreted mode:
java -Dj ava. conpi |l er=none - Xrunj profil er: ${ PARAM
- Xboot cl asspath/a:[path to agent.jar] [your JVM
paraneters] -classpath [class path] [main class]
[par anet er s]

* jit compiler mode:
java -Xrunjprofiler:${PARAM - Xbootcl asspath/a:[path
to agent.jar] [your JVM paraneters] -classpath [class
path] [main class] [paraneters]

Note: does not work with sampling

Version 1.3.1
see version 1.3.0

Version 1.4.0
see version 1.3.0

Version 1.4.1
see version 1.3.0

Version 1.4.2
see version 1.3.0

Version 1.5.0
* jit compiler mode:
java -agent pat h: ${ LI BRARY} =${ PARAM - Xshar ecl asses: none
[your JVM paraneters] -classpath [class path] [main
cl ass] [paraneters]

Note: does not work with sampling

* interpreted mode:
java -Dj ava. conpi | er=none - agent pat h: ${ LI BRARY} =${ PARAM
- Xshar ecl asses: none [your JVM paraneters] -classpath
[class path] [main class] [paraneters]

Version 1.6.0
* jit compiler mode:
java -agent pat h: ${ LI BRARY} =${ PARAM - Xshar ecl asses: none
[your JVM paraneters] -classpath [class path] [main
cl ass] [paraneters]

Note: does not work with sampling

* interpreted mode:
java -Dj ava. conpi | er=none - agent pat h: ${ LI BRARY} =${ PARAM
- Xshar ecl asses: none [your JVM paraneters] -classpath
[class path] [main class] [paraneters]

-96-

Version 1.7.0
see version 1.6.0

Vendor: Apple Computer, Inc.
Version 1.3.1

* interpreted mode:
java -Xint -Xrunjprofiler:${ PARAM
- Xboot cl asspath/a:[path to agent.jar] [your JVM
paranmeters] -classpath [class path] [main class]
[par anet er s]

Version 1.4.1

* hotspot mode:
java -Xrunjprofiler: ${PARAM - XX: - UseShar edSpaces
- Xboot cl asspath/a:[path to agent.jar] [your JVM
paraneters] -classpath [class path] [main class]
[par anet er s]

* interpreted mode:
java -Xint -Xrunjprofiler: ${ PARAM - XX: - UseShar edSpaces
- Xboot cl asspath/a:[path to agent.jar] [your JVM
paraneters] -classpath [class path] [main class]
[par anet er s]

Version 1.4.2
see version 1.4.1

Version 1.5.0

» hotspot mode:
java -agent pat h: ${ LI BRARY} =${ PARAM} [your JVM
paraneters] -classpath [class path] [main class]
[par anet er s]

* interpreted mode:
java - Xint -agentpath: ${ LI BRARY} =${ PARAM [your JVM
paraneters] -classpath [class path] [main class]
[par anet er s]

* hotspot (JVMPI) mode:
j ava - XX: - UseShar edSpaces - Xrunj profi |l er: ${ PARAM
- Xboot cl asspath/a:[path to agent.jar] [your JVM
paranmeters] -classpath [class path] [main class]
[par anet er s]

Note: deprecated, default interface JVMTI is preferred

* interpreted (JVMPI) mode:
java -Xint -XX -UseSharedSpaces - Xrunj profil er: ${ PARAM
- Xboot cl asspath/a:[path to agent.jar] [your JVM
paranmeters] -classpath [class path] [main class]
[par anet er s]

Note: deprecated, default interface JVMTI is preferred

-97-

Version 1.6.0

* hotspot mode:
java -agent pat h: ${ LI BRARY} =${ PARAM} [your JVM
paranmeters] -classpath [class path] [main class]
[par anet er s]

* interpreted mode:
java - Xint -agentpath: ${ LI BRARY} =${ PARAM [your JVM
parameters] -classpath [class path] [main class]
[par anet ers]

Vendor: BEA Systems, Inc.

Version 1.4.1

» default mode:
java - X vnpi:entryexit=of f -Xrunjprofiler:${ PARAM
- Xboot cl asspath/a:[path to agent.jar] [your JVM
par aneters] -classpath [class path] [main class]
[par anet er s]

e noopt mode:
java - Xnoopt - Xrunj profil er: ${ PARAM
- Xboot cl asspath/a:[path to agent.jar] [your JVM
paraneters] -classpath [class path] [main class]
[par anet er s]

Version 1.4.2
see version 1.4.1

Version 1.5.0

» default mode:
java -Xj vnpi :entryexit=of f -Xrunjprofiler:${ PARAM
- Xboot cl asspath/a:[path to agent.jar] [your JVM
paranmeters] -classpath [class path] [main class]
[par anet er s]

* noopt mode:
java - Xnoopt - Xrunj profiler: ${ PARAM
- Xboot cl asspath/a:[path to agent.jar] [your JVM
paranmeters] -classpath [class path] [main class]
[par anet er s]

Version 1.6.0

» default mode:
java - X vnpi: entryexit=off -agent pat h: ${ LI BRARY} =${ PARAM
[your JVM paraneters] -classpath [class path] [main
cl ass] [paraneters]

* noopt mode:
j ava - Xnoopt -agent pat h: ${ LI BRARY} =${ PARAM [your JVM
paranmeters] -classpath [class path] [main class]
[par anet er s]

Vendor: Hewlett-Packard Co.

-08 -

Version 1.3.1

* interpreted mode:
java -Xint -Xrunjprofiler:${ PARAM
- Xboot cl asspath/a:[path to agent.jar] [your JVM
paranmeters] -classpath [class path] [main class]
[par anet er s]

* hotspot mode:
java -Xrunjprofiler: ${ PARAM - Xboot cl asspat h/a: [path
to agent.jar] [your JVM paraneters] -classpath [class
path] [main class] [paraneters]

Version 1.4.1

* hotspot mode:
java -Xrunjprofiler: ${PARAM - Xbootcl asspath/a: [path
to agent.jar] [your JVM paraneters] -classpath [class
path] [main class] [paraneters]

* interpreted mode:
java -Xint -Xrunjprofiler:${ PARAM
- Xboot cl asspath/a:[path to agent.jar] [your JVM
paranmeters] -classpath [class path] [nmain class]
[par anet er s]

Version 1.4.2
see version 1.4.1

Version 1.5.0

* hotspot mode:
java -agent pat h: ${ LI BRARY} =${ PARAM} [your JVM
paraneters] -classpath [class path] [nmain class]
[par anet er s]

* interpreted mode:
java - Xint -agentpath: ${ LI BRARY} =${ PARAM} [your JVM
paraneters] -classpath [class path] [main class]
[par anet er s]

* hotspot (JVMPI) mode:
java - Xshare: of f -Xrunjprofil er: ${ PARAM
- Xboot cl asspath/a:[path to agent.jar] [your JVM
parameters] -classpath [class path] [main class]
[par anet er s]

Note: deprecated, default interface JVMTI is preferred

* interpreted (JVMPI) mode:
java -Xint -Xshare:off -Xrunjprofiler: ${ PARAM
- Xboot cl asspath/a:[path to agent.jar] [your JVM
paranmeters] -classpath [class path] [main class]
[par anet er s]

Note: deprecated, default interface JVMTI is preferred

-99 -

Version 1.6.0

* hotspot mode:
java -agent pat h: ${ LI BRARY} =${ PARAM} [your JVM
paranmeters] -classpath [class path] [main class]
[par anet er s]

* interpreted mode:
java - Xint -agentpath: ${ LI BRARY} =${ PARAM [your JVM
parameters] -classpath [class path] [main class]
[par anet ers]

Vendor: The FreeBSD Foundation

Version 1.3.1

* interpreted mode:
java -Xint -Xrunjprofiler:${ PARAM
- Xboot cl asspath/a:[path to agent.jar] [your JVM
paranmeters] -classpath [class path] [main class]
[par anet er s]

* hotspot mode:
java -Xrunjprofiler: ${PARAM - Xbootcl asspath/a: [path
to agent.jar] [your JVM paraneters] -classpath [class
path] [main class] [paraneters]

Note: does not work wi