
1. Description

TCaptureX library permits the text extraction from the
various applications. It contains a COM object called
TextCaptureX, that exposes some methods that allow text
extraction.

1.1. Creating a TextCaptureX object
First of all, the TCaptureX library must be registered on
the system. This can be done using the following command:

 regsvr32 <path>\TCaptureX.dll

where <path> is the actual path to the TCaptureX library.
The registrations process is automatically done from the
setup.

Following are some examples on how to create a TextCaptureX
object in your application.

1.1.1. Visual C++:
In order to use the COM object in your C++

application, add the following import statement to your C++
source file, like this:

#import “<path>\TCaptureX.dll”

Optionally, you may add also:

using namespace TCaptureXLib;

in order to reference the objects without specifying
the namespace.

Then create the object in one of the following two
ways:

ITextCaptureXPtr obj(__uuidof(TextCaptureX));

Or

ITextCaptureXPtr obj = NULL;
HRESULT hr = obj.CreateInstance(__uuidof(TextCaptureX));

In order to destroy the object, call:

obj.Release();

Remark: before creating the object, CoInitialize API
function must be called.

1.1.2. C#
- add TCaptureX library to the list of the project

references
Optionally, you may add at the beginning of the file:

using TCaptureXLib;

in order to reference the objects without specifying
the namespace.

 The actual creation is:

TextCaptureXClass obj = new TextCaptureXClass();

1.1.3. Visual Basic
- add TCaptureX library to the list of the project

references
 The actual creation is:

 Dim obj As New TextCaptureX

1.2. Using a TextCaptureX object

TextCaptureX object exposes the following methods:

- GetActiveWindowHwnd
- CaptureInteractive
- CaptureActiveWindow
- GetTextFromPoint
- GetTextFromRect

1.2.1. GetActiveWindowHwnd method

HRESULT GetActiveWindowHwnd([out,retval] LONG* hwnd);

It returns the handle of the active window. If the active window is a
MDI container, it returns the handle of the active MDI child.

Examples:

Visual C++:

LONG hWnd = obj->GetActiveWindowHwnd();

C#:
long hWnd = obj.GetActiveWindowHwnd();

Visual Basic:

Dim hWnd As Long
hWnd = obj.GetActiveWindowHwnd()

1.2.2. CaptureInteractive method

HRESULT CaptureInteractive([out] LONG* hwnd, [out] LONG* left,
[out] LONG* top, [out] LONG* width, [out] LONG* height,
[out,retval] LONG* selection);

This method permits an automatic selection of the capture window and
coordinates. When calling this method, the user is able to select with
the mouse a rectangle on the screen, no matter what window. First left
click specifies the point where the rectangle starts, the second left
click specifies where the selection ends. At any time, pressing ESC
key, aborts the selection.

Parameters:
LONG* hwnd : will contain the handle of the window
LONG* left: the X coordinate of the selected rectangle
LONG* top: the Y coordinate of the selected rectangle
LONG* width: he width of the selected rectangle t
LONG* height: the width of the selected rectangle
LONG* selection: a custom value specifying the capture result:

- 0, if the selection was ok
- 1, if the user cancelled the capture
- 2, if an error occurred

Examples:
Visual C++:

 long hWnd = 0;
 long nLeft = 0;
 long nTop = 0;
 long nWidth = 0;
 long nHeight = 0;
 LONG result = obj->CaptureInteractive(&hWndTarget, &nLeft,
&nTop, &nWidth, &nHeight);
 if(0 == result) //selection ok
 {
 //do something

}

C#:
long hWnd = 0;
long nLeft = 0;
long nTop = 0;
long nWidth = 0;
long nHeight = 0;
long result = obj.CaptureInteractive(out hWndTarget, out
nLeft, out nTop, out nWidth, out nHeight);
if(0 == result) //selection ok
{
 //do something
}

Visual Basic:

Dim result As Long
Dim hWnd As Long
Dim left As Long
Dim top As Long
Dim width As Long
Dim height As Long
result = obj.CaptureInteractive(hWnd, left, top, width,

height)
If(0 == result) Then ’selection ok
{
 ’do something
}
End If

1.2.3. CaptureActiveWindow method

HRESULT CaptureActiveWindow([out,retval] BSTR* result);

This method captures the text from the window that is currently active,
that is the window returned by the GetActiveWindowHwnd method. The
return value is the entire text from the active window.
Remark: The application where this method is called is responsible of
NOT containing the active window of the system.

Parameters:
BSTR* result : the text from the active window

Examples:
Visual C++:

 _bstr_t result = obj->CaptureActiveWindow();

C#:
 string result = obj.CaptureActiveWindow();

Visual Basic:
 Dim result As String
 result = obj.CaptureActiveWindow()

1.2.4. GetTextFromPoint method

HRESULT GetTextFromPoint([in] LONG hwnd, [in] LONG x, [in] LONG y,
[out,retval] BSTR* result);

This method captures the word specified by the point (x, y) in screen
coordinates, in the window specified by hwnd.
Remark: One may use CaptureIntercative method to grab these parameters,
that is window handle and coordinates.

Parameters:
LONG hwnd : handle of the window to capture from
LONG X : X coordinate of the point
LONG Y : Y dinate of the point coor
BSTR* result : the word (if any) located at the specified point

Examples:
Visual C++:

LONG hwnd = 0;
LONG X = 0;
LONG Y = 0;
//set the values
.......
bstr_t bstrResult = obj->GetTextFromPoint(hwnd, X, Y);

C#:

long hwnd = 0;
long X = 0;
long Y = 0;
//set the values
.......

 string result = obj.GetTextFromPoint(hwnd, X, Y);

Visual Basic:
 Dim result As String
 Dim hwnd As Long
 Dim X As Long
 Dim Y As Long
 ‘set the values

.......
 result = obj.GetTextFromPoint(hwnd, X, Y)

1.2.5. GetTextFromRect method

HRESULT GetTextFromRect([in] LONG hwnd, [in] LONG left, [in] LONG top,
[in] LONG width, [in] LONG height, [out,retval] BSTR* result);

This method captures the text from the rectangle specified (left, top,
width, height) in screen coordinates, in the window specified by hwnd.

Remark: One may use CaptureIntercative method to grab these parameters,
that is window handle and coordinates.

Parameters:
LONG hwnd : handle of the window to capture from
LONG left : X coordinate of the upper left point of the rectangle
LONG top : Y coordinate of the upper left point of the rectangle
LONG width : width of the rectangle
LONG height : eight of the rectangle h
BSTR* result : the text located in the area specified by the rectangle

Examples:
Visual C++:

LONG hwnd = 0;
LONG left = 0;
LONG top = 0;
LONG width = 0;
LONG height = 0;
//set the values
.......
bstr_t bstrResult = obj->GetTextFromRect(hwnd, left, top,

width, height);

C#:

long hwnd = 0;
long left = 0;
long top = 0;
long width = 0;
long height = 0;
//set the values
.......

 string result = obj.GetTextFromRect(hwnd, left, top, width,
height);

Visual Basic:
 Dim result As String
 Dim hwnd As Long
 Dim left As Long
 Dim top As Long
 Dim width As Long
 Dim height As Long
 ‘set the values

.......
 result = obj.GetTextFromRect(hwnd, left, top, width,
height)

	Description
	Creating a TextCaptureX object
	Visual C++:
	C#
	Visual Basic

	Using a TextCaptureX object
	GetActiveWindowHwnd method
	CaptureInteractive method
	CaptureActiveWindow method
	GetTextFromPoint method
	GetTextFromRect method

