

Localizing .NET applications

Sisulizer

9 November 2011

2

Introduction

This document describes the steps that you should perform when localizing your .NET applications.

Localization means translating your application into another language. In the other words it means

translation of user interface elements, resource strings, images and help files. For example if you have

written your original application and help files in English and you want to start selling your application in

Germany you have to translate your application and help files to German. Before you can start translating

your application it must be internationalized. This means preparing your source code and user interface

such way that it does not contain any language depend data such as hard coded strings.

Internationalization is very important because it is necessary for localization and if it is not properly done

then localization will be slower and more expensive.

The first part of the document deals with internationalization and common concept of localization. The

second part describes localization architecture of different .NET technologies such as WinForms, WPF and

Silverlight. The last part is Sisulizer specific and it shows the localization process and explains how to

take .NET’s satellite assemblies in use. We finally show how to perform runtime language switch.

This document is written for Visual Studio 2008 and C# using WinForms, WPF and Silverlight. Silverlight

samples are written in Visual Studio 2010. If you use an older Visual Studio, Visual Basic or Delphi Prism you

can perform same steps but you may have to modify them.

3

.NET Localization Architecture

.NET applications contain one or more assembly files. The file extension of an assembly file is either .exe

or .dll. Assembly files contain compiled code and resource data.

Resource data is important for localization. It contains all forms, strings, images, etc. In order to localize an

application we have to translate the resource data. This is where .NET uses its own unique approach. Let’s

first look at how native Windows applications (WIN32/WIN64) are localized. It is most often done such way

that a localization tool creates one EXE for each language. This means that if you application is MyApp.exe

the German application is also MyApp.exe but the localization tool creates the file into another location

(e.g. de\MyApp.exe) and replaces the resource with German resources. When you deploy a localized native

Windows application you deploy the localized EXE instead of original EXE. This does not work in .NET.

Microsoft has chosen a different method for .NET localization. In .NET the localized data must be in a

satellite assembly files. They are DLL files that contain only localized resource data, no code at all.

If your original application is MyApp.exe then the German assembly file is de\MyApp.resources.dll. Note

that the satellite assembly file must locate on a locale specific sub directory of the original application. The

name must be the same as the original but instead of having .exe (or .dll) extension the satellite assembly

file uses .resources.dll file extension. Having a satellite assembly file on right sub directory with right name

is not enough. The actual resource name must also be localized. .NET uses named resources where each

resource has a string name. For example if we have MyApp.exe the name of main form could be

MyApp.Form1.resources. The German satellite assembly file must use MyApp.Form1.de.resources name. If

the resource name is not right .NET cannot load the resource even if the file name and directory are right.

There is one more pitfall. It is signing. If you have signed your original assembly file and your localized

satellite assembly files are not signed .NET runtime does not load the resources even if the pathname and

resource names are right.

The first half of the document deals with internationalization and common concept of localization. The

second half is Sisulizer specific and it shows the localization process and explains how to handle some

advanced issues such as runtime language switch.

There are two tools that are useful when viewing assembly files. The first is ILDASM.exe that comes

with .NET SDK and Visual Studio. It can be used to view the resource names. It cannot show the resource

data. If you want to view both resource name and data I recommend using Reflector (http://reflector.red-

gate.com/). It is very useful application to view .NET assemblies.

.NET has two kinds of user interface libraries. .NET 1.0 introduced Windows Forms library that uses

traditional pixel based layout where every component has position (Left and Top properties) and size

(Width and Height properties). .NET 3.0 introduced new kind of user interface library that does not use

http://reflector.red-gate.com/
http://reflector.red-gate.com/

4

pixel based layout but uses container components that dynamically layout components on the container on

run time according the layout rules. This kind of layout mechanism is similar to Java’ s Swing classes. This

new library is called WPF. Silverlight is a subset of the library. WinForms also contains some layout controls

but most of the user interface is pixel based. WPF also contains pixel based container (CanvasPanel) but it is

not that commonly used. Generally Windows Forms use pixel based layout and WPF/Silverlight dynamic

layout.

5

Resources

In order to be localizable a .NET application should store all localizable resource into resources. There are

several different resource types. The most important resource types are ResX, XAML, image, and XML

resources.

ResX is an XML based flat resource format that contains one or more resource items. Each resource has a

name, value and optional command and type information. The value contains the actual resource data.

There are two kinds of ResX files. One contains properties and components of a form. Another contains any

kind of resource data such as strings, images, HTML data and XML data.

Both Windows Forms and WPF use ResX resources. Windows Forms uses both form and resource ResX.

WPF uses only resource ResX files. Visual Studio can automatically store all properties of Windows Forms

form into ResX file. See the next chapter learn more. WPF added a new resource format called XAML. It is

also based on XML but unlike ResX the file format is not flat but is structured. There is one XAML file for

each page or window. Each XAML contains the properties and events of the root components and all the

components it contains. Silverlight uses same XAML resource files as WPF.

In addition of ResX and XAML resources any .NET application can also contain plain resource. Most often

they are image, HTML or XML files that are embedded into resource block of an assembly. However it is

possible to add any file as plain resource data inside the .NET assembly. It is up to the developer to choose

if to store images and files inside ResX or as plain resource data. A .NET assembly file can also contain some

unmanaged resources such as icon, manifest and version resources.

6

User interface

Before we can start localizing a .NET application it must be prepared for localization. This process is called

internationalization (I18N). Depending on the user interface library the internationalization is done little bit

different way.

Windows Forms
Let’s start with a Windows Forms sample. NET\Tutorial\WinForms\Original sample directory contains a

project that requires internationalization. The project is very simple and does not do anything meaningful

but the project shows most of the internationalization issues. The following picture contains ReworkForm

form that needs preparing for localization.

The form contains three cases where we have to change it in order localize the form easier. Each case is

marked with red bounds and a number. Let’s go through each step.

In the case #1 another control is following a control. The Value label is immediately followed by a text box.

This will cause you problems because it is very likely that the translation of the Value to other language will

be longer even much longer that the original value. This will make label and text box to overlap each other.

The translator can move the edit control more right to make room for the longer label but this will take

some time and will cost. Remember if you localize to 10 different languages most likely every single

translator has to do the same modification that will take a lot of time and even more important make your

UI to look different on each language. A better approach is to design the original UI such way the

translators need hardly ever relocate controls. In this case we can place the label and text box on different

lines - label above the text box. This gives label possibility to expand very much without overlapping the

text box control.

In the case #2 control’s AutoSize is set to false and the width is too short. Keep the AutoSize property

always set to true.

In the case #3 AutoSize property is not set true. Keep the AutoSize property of Label turned on. This makes

sure that longer translation of the Text property is not cut when drawn on the form. Label2 control needs

another fix. Label2.Text is set to Label2 on design time. On run time this is replaced with "Click the above

button to process data" string. So the original string is not used at all. Keeping it will only make your

localization project larger and more expensive. A good practice is to set all these Text property some fixed

value such as "dummy". After creating Sisulizer project you can easily exclude all strings having "dummy"

value.

7

The first step in internationalizing a form is to turn Localizable property true. This will make Visual Studio to

store all property values of the form and its components to the resource file (.resx) instead of hard coding

them to the source code.

The following picture contains the same sample form after it has been prepared for localization. Label and

text box are not on the same line any more. Check box’s and Label's auto sizing has been turned on.

Unused strings have been replaced with dummy word.

WPF
To be written.

Silverlight
To be written.

8

Hard Coded Strings

Most applications have hard coded strings inside the code. Some of them must not be translated. Some of

them should be translated. If you want to localize such a string you have to remove them and replace them

by resource strings. This is called resourcing. Take a look at the following code. It contains a hard coded

string that is used to set Caption property of label.

private void Form1_Load(object sender, EventArgs e)

{

 label1.Text = "This is a sample";

}

To resource this string open Resources.resx file in the Solution Explorer.

A resource editor appears. Enter SampleText in the Name field and copy the text from the source code to

the Value field.

Now you have added the string in to string resource table. The final step is to remove the hard coded string

from your code and replace it with resource string. Each item in the resource table gets a symbolic name

that is a combination of assembly name, resource table name and item name.

private void Form1_Load(object sender, EventArgs e)

{

 label1.Text = Original.Properties.Resources.SampleText;

}

9

Code enabling

To be written.

10

Using Sisulizer

We have now internationalized our .NET project. It is time to localize it. The rest of the document is used to

describe how to use Sisulizer to localize a .NET application. There are three different methods to localize

a .NET application using Sisulizer. They are project localization, assembly localization and resource file

localization.

Project Localization

When using project localization you add either Visual Studio project file (.csproj or .vbproj) or Visual Studio

solution file (.sln) into Sisulizer project. Sisulizer scans the project or solution file to find out what resources

files it uses. When performing build process for the Sisulizer project Sisulizer creates localized resource files

and optionally compiles localized satellite assembly files. You need to have full project source file in order

to use project localization. Let’s have an example. We have Visual Studio C# project file Converter.csproj.

Add that file to a Sisulizer project. When Sisulizer scans the project it founds that the project contains one

form resource, Form1.resx, and one string resource Properties\Resources.resx. Sisulizer scans data from

these resource files. If you add a new resource into your Visual Studio project there is no need to add that

resource into Sisulizer project because the Visual Studio project is already there and it knows what resource

files belongs to the project. Let’s suppose that you added German and Japanese as target languages into

the Sisulizer project. When Sisulizer performs build process it first creates the localized resource files that

are Form1.de.resx, Form1.ja.resx, Properties\Resources.de.resx, and Properties\Resources.ja.resx. Finally

Sisulizer uses the localized resource file to create localized satellite assembly files:

bin\Debug\de\Converter.resources.dll and bin\Debug\ja\Converter.resources.dll.

Assembly Localization

If you don’t have project source code you can use assembly localization where you add the assembly file or

files of the application into Sisulizer project. When building the project Sisulizer creates localized satellite

assembly files. Both project and assembly localizations produce the same output files. Project localization

also creates localized resource files (.resx and .xaml). When using assembly localization you need to have all

the assembly files used by the assembly file that you localize. For example if you application uses two

assembly DLL files you need to have them on the same directory as the assembly that you plan to localize.

Let’s have an example. We have assembly file Converter.exe. Add that file to a Sisulizer project. When

Sisulizer scans the project it reads the form resource, Converter.Form, and string resource,

Converter.Properties.Resources. When Sisulizer performs build process it firstly creates localized resource

data and then uses them to create localized satellite assembly files: de\Converter.resources.dll and

ja\Converter.resources.dll.

When using assembly localization you need to have the assembly file that you want to localize (e.g.

Converter.exe) and all assembly files (.dll) that the assembly file uses.

Resource Localization

If you don’t have project source code files and you don’t have compiled assembly files either but you have

original resource files (either .resx or .xaml) you can use resource file localization. Add the resource file into

the Sisulizer project. When Sisulizer builds the project it creates localized resource file. Then it is up to the

developer of the application to compile localized satellite assembly files. Let’s have an example. We have a

resource file Form1.resx. Add that file to a Sisulizer project. When Sisulizer scans the project it reads the

form resource file. When Sisulizer performs build process it creates the localized resource files that are

Form1.de.resx, Form1.ja.resx.

11

I recommend using the project localization. If you do not have source codes then use assembly localization.

Use resource file localization only as the last option in the case you do not have project source codes or

assembly files but only resource files.

Silverlight Localization

When you deploy a Silverlight application you package assembly file(s) and manifest file into a XAP file. It is

a zip-compressed file that contains assembly files of the application and a manifest file that contains

information about the application. XAP file can also contain satellite assembly files. It can even contain

satellite assembly files for several languages. When Visual Studio compiles a Silverlight application it

creates the original XAP file. Add that file into Sisulizer project file. When Sisulizer performs build process it

creates either one single multilingual XAP file containing satellite assembly files in several languages, or

several XAP files each containing satellite assembly files in one language.

Framework and SDK

Your translator does not need to have .NET framework installed. However you must have at least .NET

framework installed if you plan to use either project or assembly localization. If you use assembly

localization you must have also .NET SDK installed. If you use project localization and you want that Sisulizer

to create satellite assembly files you also must have .NET SDK installed. If you have Visual Studio you have

both framework and SDK. If you do not have SDK you can download it from Microsoft’s web pages.

Now we can through step by step how to create a new Sisulizer project containing a Visual Studio project.

Create project
Start Sisulizer and choose File | New to start Project Wizard. Click Locale a file or files and click Next.

Select File page appears. Browse the directory where your Visual Studio project file (.csproj) is located and

select that file. If you use Visual Basic select .vbproj file. You can also select Visual Studio solution file (.sln).

Click Next.

12

Visual Studio .NET project file page appears. This page contains Visual Studio project related options. Click

Next.

Select Languages page appears. Use this page to select the language of the original file (in most cases

Sisulizer detects it) and to select the target language(s). You can later change the original language and add

more target languages or remove existing ones.

13

Click Finish to finish the wizard. Sisulizer creates a new project, add the application file into the project and

finally scans the project to find resource items from the application file. Before show the project Sisulizer

shows the following dialog that gives you more information about how to translate the project.

Click Ok to close the dialog and to show the project.

Sisulizer project can contain any number of files. A file that has been added to the project file is called

source. To add a new source right click All in the project tree and choose Add Source. You can configure the

source by right clicking the file name in the project tree and choosing Properties. The following dialog is

shown.

14

Use the dialog to set the localization options such as output directory, resources to be localized, etc. To get

detailed information about the dialog select the sheet and click Help. Now we have created a project for

our application. The next step is to translate it.

Translate
Sisulizer provides several ways to translate projects. You can translate manually by entering in the project

sheet. The sheet works in the same way as Excel so if you are familiar to Excel you learn very quickly to use

it. If you are not familiar to Excel it is easy to learn how to use the sheet. Just use mouse select a cell where

you want to enter translation and start typing. You can also use arrow key to select a cell.

Another powerful way to translate projects is to import translations. Sisulizer can import translation from

several sources such already localized files, glossary files (TMX, Excel, TXT, CSV) or from databases. You can

import data to project by choosing File | Import. It starts Import Wizard that lets you to select the source

and import options. You can also import to single language column by choosing Column | Import.

Sisulizer has build in support for translations memories. They are storages that keep existing translations.

You can save existing translation from project to translation memory by choosing File | Save to Translation

Memory. You can make translation memory to translate the project by choosing Project | Translate Using

Translation Engine.

Final way to translate a project is to send it to translator. This is very easy in Sisulizer. Choose Project |

Exchange. It lets you to create a file to be sent to translator. When translator has translated the file he or

she will send it back to you and you can import translation from the file by choosing Project | Import.

You can find more information about translating the project from Sisulizer online help.

Build
Last step in the translation process is building localized files. Sisulizer takes care about this. It reads the

original files merges the translations from the project file to create localized resource files and finally

creates localized satellite assembly file. You have two ways to build the files. The first one is to open

Sisulizer project and to choose Project | Build All. This makes Sisulizer to build localized files for all

languages in the project file. If you want to build files for one language select the language and choose

Project | Build Item. If you have Sisulizer Enterprise edition you can also use Sisulizer’s command line tool,

SlMake.exe, to build localized files. Go to Sisulizer directory and type SlMake on command line and press

Enter to learn about SlMake. By using SlMake you can integrate Sisulizer into your make process.

15

Now we have covered the basic Sisulizer localization process. The remaining chapters will cover some

advanced topics about Sisulizer.

Component mapping
To be written.

Comments and other additional information
To be written.

Runtime language switch
To be written.

Signing
If an original assembly is signed then also the satellite assembly files must be signed with the same key in

order to make them work. There are two kind of key files: SNK and PFX.

You can create a SNK file using SN.exe tool

sn -k keyPair.snk

Our sample, <sisulizer-data-dir>\NET\WinForms\CSharp\StrongName\StrongName.csproj, has been signed

using a SNK key. Sisulizer automatically detects if the assembly has signed and uses the same key to sign

the satellite assembly files. To check that Sisulizer correctly detected your key open your Sisulizer project

and right click the application project file (e.g. StrongName.csproj) in the project tree. Select Options sheet

and check if Default parameters contains /keyf value.

If the /keyf value is not there right click Assembly linker parameters edit. Choose Add key file and browse

the key file (e.g. StrongName.snk).

If you use a PFX key Sisulizer cannot automatically pick the parameter. Instead you have to add the key

name parameter into the assembly linker parameters. The following picture shows how to give a key name.

16

You can get the name of the key by browsing key container of your PC.

Once you have configured the key settings Sisulizer always signs all files it creates. This also happens on

Sisulizer command line tool, SlMake. Add following line to your makefile to create and sign the localized

satellite assembly files.

SlMake create StrongName.slp

If you localize an assembly file instead of Visual Studio project file Sisulizer cannot pick the key name. You

must enter either key file (/keyf) or key name (/keyn) parameter.

17

ClickOnce deployment

ClickOnce is a .NET technology that enables the user to install and run a .NET application by clicking a link in

a web page. Visual Studio supports ClickOnce. In Solution Explorer, right click the application project and

choose Publish. The Publish Wizard appears. The wizard asks the deployment options. By default the deployment

package contains the application assembly and any library assembly it uses. However it does not contain satellite

assembly files created by Sisulizer. If you want to include satellite assembly files you have two choices.

1. Turn off Sisulizer’s satellite assembly creation option and let Visual Studio to compile the satellite

assembly files.

2. Do not use Visual Studio to create the deployment files but use Mage.exe or MageUI.exe tools to

create them.

Let’s first look at the option #1. Open Sisulizer project. In Project Tree right click the application project and

choose Properties. The Source dialog appears. Select Options sheet and uncheck Create satellite assemblies.

Now Sisulizer create only the localized .resx and/or .xaml files but does not create the satellite assembly

files (e.g. de\Automatic.resources.dll).

The next step is to configure Visual Studio to compile the satellite assembly files. Once you have used

Sisulizer to create the localized resource files you can see them from Visual Studio’s Solution Explorer. By

default they are not included into the project t(icon is white page).

http://en.wikipedia.org/wiki/Microsoft

18

Select a resource file, right click it and choose Include In Project. Visual Studio includes the resource files

into the project. When included the icon of the file turns in to normal.

This also makes Visual Studio to compile the satellite assembly file. You have to remember to include every

single resource file created by Sisulizer. If the localized resx file is not visible in the Solution Explorer click

Show all Files button on the Solution Explorer toolbar. If you don’t the satellite assembly is not created or it

misses the resources of the resource file. The following picture shows Automatic sample where all Finnish,

German and Japanese resource files have been included into the project.

This is all you have to do. Next time you publish your project the package contains satellite assembly files.

<sisulizer-data-dir>\NET\WinForms\CSharp\ClickOne\Automatic directory contains a sample that uses this

approach to deploy itself.

Method #1 seems easy but gets complicated if the amount resource files get high. In that case we

recommend manually create the deployment files (method #2). MSDN contains a detailed article about this.

Search “Walkthrough: Manually Deploying a ClickOnce Application” article form MSDN. However the article

19

does not cover satellite assembly files. We will now go through the steps needed to manually deploy your

project. <sisulizer-data-dir>\NET\WinForms\CSharp\ClickOne\Manual directory contains a sample that uses

manual deployment. You will need Manifest Generation and Editing Tool. There are two version: Mage.exe is a

command line tool, and MageUi.exe is a graphical client tool. These instructions are for the command line tool,

Mage.exe.

1. Create a new directory where you put the files you want to localize. A good location is the output

directory of your sample. In most cases it is bin\Debug or bin\Release directory. Create

bin\Debug\Deploy directory.

2. Create a sub directory that contains your application assembly files, satellite assembly files, and

other files that are needed. A good practice is to use the version as the directory name. Create

bin\Debug\Deploy\1.0.0.0 and copy there Manual.exe, de\Manual.resources.dll,

fi\Manual.resources.dll and ja\Manual.resources.dll. Manual.exe is the application assembly file

created by Visual Studio. The dll files are the satellite assembly files created by Sisulizer.

3. Open command line and go to the bin\Debug\Deploy\1.0.0.0 directory. Enter

mage -New Application -ToFile Manual.exe.manifest -name "Manual"

-Version 1.0.0.0 -FromDirectory "."

This creates the application manifest file, Manual.exe.manifest.

4. Sign the manifest file by entering

mage -Sign Manual.exe.manifest -CertFile ..\..\MyKey.pfx

Now you have application manifest file done for your deployment version. You still have to create

deployment manifest.

5. Go one directory up to bin\Debug\Deploy and enter

mage -New Deployment -Install true -Publisher "Sisulizer" -

AppManifest 1.0.0.0\Manual.exe.manifest -ToFile Manual.application

and

mage -Sign Manual.application -CertFile ..\MyKey.pfx

This will create and sign the deployment package.

6. Finally deploy bin\Debug\Deploy directory into your deployment location.

See <sisulizer-data-dir>\NET\WinForms\CSharp\ClickOne\Manual\bin\Debug to see how the files are

created and copied.

20

Online help, databases, data files and web pages

To be written.

